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Cerebrospinal fluid A beta 1–40 peptides
increase in Alzheimer’s disease and are
highly correlated with phospho-tau in
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Abstract

Background: Amyloid pathology, which is one of the characteristics of Alzheimer’s disease (AD), results from
altered metabolism of the beta-amyloid (Aβ) peptide in terms of synthesis, clearance, or aggregation. A decrease in
cerebrospinal fluid (CSF) level Aβ1–42 is evident in AD, and the CSF ratio Aβ42/Aβ40 has recently been identified as
one of the most reliable diagnostic biomarkers of amyloid pathology. Variations in inter-individual levels of Aβ1–40
in the CSF have been observed in the past, but their origins remain unclear. In addition, the variation of Aβ40 in
the context of AD studied in several studies has yielded conflicting results.

Methods: Here, we analyzed the levels of Aβ1–40 using multicenter data obtained on 2466 samples from six
different cohorts in which CSF was collected under standardized protocols, centrifugation, and storage conditions.
Tau and p-tau (181) concentrations were measured using commercially available in vitro diagnostic immunoassays.
Concentrations of CSF Aβ1–42 and Aβ1–40 were measured by ELISA, xMAP technology, chemiluminescence
immunoassay (CLIA), and mass spectrometry. Statistical analyses were calculated for parametric and non-parametric
comparisons, linear regression, correlation, and odds ratios. The statistical tests were adjusted for the effects of
covariates (age, in particular).
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Results: Regardless of the analysis method used and the cohorts, a slight but significant age-independent increase
in the levels of Aβ40 in CSF was observed in AD. We also found a strong positive correlation between the levels of
Aβ1–40 and p-tau (181) in CSF, particularly in control patients.

Conclusions: These results indicate that an increase in the baseline level of amyloid peptides, which are associated
with an increase in p-tau (181), may be a biological characteristic and possibly a risk factor for AD. Further studies will
be needed to establish a causal link between increased baseline levels of Aβ40 and the development of the disease.

Keywords: Alzheimer’s disease, Amyloid peptides, Tau proteins, Biomarkers, Cerebrospinal fluid (CSF)

Background
Alzheimer’s disease (AD) neuropathological brain lesions
consist of aggregates of hyper-phosphorylated tau proteins,
which have also been called neurofibrillary tangles (NFTs),
and extracellular deposits of amyloid precursor protein
(APP) derived amyloid-beta (Aβ) peptides, which are
known as amyloid plaques. Much research has been focus-
ing recently on the molecular mechanisms underlying
these pathological events as it has become essential to
develop preventive and therapeutic strategies for AD. For a
long time, the main explanation for the pathogenesis of
AD was that amyloidogenesis was the primum movens of
the affection, which led to the concept of the amyloid
cascade [1]. According to this picture of the disease, the
alteration of APP metabolism (increasing amyloid produc-
tion, decreasing clearance rates), the aggregation of Aβ
peptides, and the formation of amyloid plaques might
result in microglial and astrocyte activation, local in-
flammatory responses, oxidative stress, and eventually
the hyper-phosphorylation of tau proteins and second-
arily the formation of NFTs [2].
The idea that amyloid peptides contribute importantly

to the etiology of AD is supported by cases of AD who
carry presenilins (1 or 2) or APP mutations [3]. These
gene mutations trigger the overproduction of Aβ
peptides or the preferential production of Aβ42, which
is the most amyloidogenic of all the peptides. An APP
gene dose effect triggering AD development, as occurs
in Down syndrome [4] and in gene duplication processes
[5], is a further/an additional potential factor contributing
to amyloid pathogenesis. Other genetic factors have been
described, such as apolipoprotein E4 allele, in particular [6].
Studies on cerebrospinal fluid (CSF) biomarkers in AD

have greatly improved our understanding of the patho-
physiology of this disease. The production of amyloid
peptides following the neuronal processing of APP has
been involved in the response to physiological challenge
with neurotrophic, anti-microbial, tumor suppression, or
synaptic function regulation activities [7]. Regarding tau
proteins which are associated to microtubules, their
physiological secretion by neuronal cells is a recent
discovery which physiological relevance and benefit are
still matter of debate [8]. A decrease in CSF Aβ42 is

especially indicative of an amyloidogenic process, while
an increase in tau proteins (total tau and its phosphory-
lated form p-tau (181)) is known to be associated with
axonal loss and tau pathology in AD [9, 10]. Tests on
these two biomarkers are being included nowadays in
the international clinical research guidelines [11, 12],
and many centers [11–15], and ourselves [13–15] have
integrated them into daily clinical practice. Importantly,
these biochemical CSF measurements are concordant
with the results of the PET imaging approaches which
were initially developed to determine the brain amyloid
load [16], and now also serve to measure tau accumula-
tion [17]. These data are in line with hypotheses put
forward by Jack et al. [18] about the chronology of the
evolution of biomarkers during the pathophysiological
process, and the relevance of amyloid markers in
particular at a very early stage, probably as early as 10 to
15 years before the onset of clinical symptoms.
Under non-pathological conditions, Aβ40 is highly

correlated with Aβ42 [19]. The computation of the ratio
Aβ42/40 is now being used in routine clinical practice
on AD patients in some centers [20–22]. This is a useful
approach for reducing pre-analytical Aβ42 biases [23–25]
and improving the diagnostic performances of CSF bio-
markers [26], especially in discordant cases [27]. This ratio
can also be used to account for inter-individual amyloid
variations in the baseline CSF level [28]. Low CSF Aβ40
levels might also be indicative of frontotemporal dementia
(FTD) [29, 30], cerebral amyloid angiopathy (CAA) [31],
HIV [32], multiple sclerosis [33], or normal pressure
hydrocephalus (NPH) [34].
In their meta-analysis of AD biomarkers, Olsson et al.

[35] observed the existence of a negligible difference in
CSF Aβ40 between AD and control patients. Most of the
32 studies considered had a limited number of patients
included in each group (the median number of subjects
per group was less than 30, and the maximum number
of subjects was 137 and 328 in the AD and non-AD
groups, respectively). The focus of these studies was also
quite different, looking at the diagnostic interest of
Aβ42/40 in AD and of Aβ peptides in other neurodegen-
erative diseases, or being more interested in patho-
physiological mechanisms.
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The rationale for this study is therefore based on
several elements: first, to resolve the controversy
conflicting studies showing or not an increase in Aβ40
in AD; second, to provide explanations for the very good
diagnostic performance of the Aβ42/40 ratio calculation;
and finally, in the context of the pathophysiology of the
disease, to provide elements linking, in sporadic AD, the
level of expression of amyloid peptides and the disease.
We revisited the issue of the Aβ40 levels using large
series of multicenter data. The results show the occur-
rence of a significant age-independent increase in CSF
Aβ40 in AD. Another noteworthy finding was the exist-
ence of a strong positive correlation between CSF Aβ40
and the p-tau (181) concentration, even in patients with-
out Alzheimer’s disease (NAD). These findings suggest
that the baseline amyloid peptide level may constitute a
risk factor contributing to sporadic AD, which is associ-
ated with p-tau (181) production.

Methods
Study design and subjects
Patients with cognitive impairments were recruited
and followed at the Montpellier and Paris Memory
Resources Center (CMRR). The Montpellier partici-
pants were subdivided into two cohorts which were
recruited during different periods: Montpellier 1 (Mtp-1)
(recruited from July 2015 to May 2017) and Montpellier 2
(Mtp-2) (recruited from September 2009 to June 2015).
These two periods corresponded to the use of different
ELISA kits (SupTable 1). The cohort Mtp-1 consisted of
400 patients (126 AD, 274 NAD), and the cohort Mtp-2
consisted of 504 patients (220 AD, 284 NAD). The Paris
cohort consisted of 624 patients (299 AD, 325 NAD) from
the Centre de Neurologie Cognitive, Groupe Hospitalier
Lariboisière Fernand-Widal (recruited from March 2012
to May 2017). The Barcelona SPIN (Sant Pau Initiative on
Neurodegeneration) cohort (79 AD, 148 NAD) consisted
of patients who had undergone lumbar puncture for CSF
AD biomarkers at the Sant Pau Memory Unit [36, 37]
(recruited from May 2009 to December 2017). All the
patients underwent a thorough clinical examination
including biological lab tests, neuropsychological assess-
ments, and brain imaging. The same diagnostic procedure
[27] and AD diagnostic criteria [11] were used at all the
clinical centers which participated. We included in the
AD group patients which, in the absence of substantial
concomitant cerebrovascular disease, meet the AD core
clinical criteria and are considered as probable AD or
possible AD with biomarker evidence of AD (CSF amyl-
oid, tau, FDG-PET, or structural MRI) [11]. Although CSF
amyloid biomarkers were included in the diagnostic
criteria for AD, we observed that between 2 and 7% of AD
cases, depending on the cohort, were not based on evi-
dence of amyloid biomarkers but rather on other elements

such as MRI. The possible AD category without amyloid or
tau biomarker evidence of AD corresponds to the mild cog-
nitive impairment (MCI) in the absence of core features of
synucleinopathies, frontotemporal dementia (FTD), primary
progressive aphasia, or evidence for another concurrent, ac-
tive neurological disease, or a non-neurological medical co-
morbidity or use of medication that could have a
substantial effect on cognition. Subjective cognitive impair-
ment (SCI) corresponds to a situation where a patient re-
ports an alteration of their cognitive functions, including
memory, but this cannot be documented by clinical, neuro-
psychological, imaging, or biological tests.
The NAD diagnosis included SCI, CAA, NPH, FTD

based on relevant criteria [38], dementia with Lewy
bodies (based on the McKeith criteria [39]), corticobasal
degeneration (based on the criteria defined by Boeve
et al. [40]), progressive supranuclear palsy, amyotrophic
lateral sclerosis, and vascular dementia (based on the
usual consensus diagnostic criteria). All the patients at
each clinical center gave their written informed consent
to participating in clinical research on CSF biomarkers,
which was approved by the respective Ethics Commit-
tees. The committee responsible in Montpellier was the
regional Ethics Committee of the Montpellier University
Hospital and Montpellier CSF-Neurobank #DC-2008-
417 at the certified NFS 96-900 CHU resource center
BB-0033-00031, www.biobanques.eu. Authorization to
handle personal data was granted by the French Data Pro-
tection Authority (CNIL) under the number 1709743 v0.
Two sets of data originating from the analysis of CSF

samples at the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (www.loni.ucla.edu/ADNI) were
used after the agreement of the scientific committee.
ADNI UPEN-RESULTS, UPEN-ELYCYS (n = 311), and
MS UPENNMSMSABETA (n = 400) data were also used.
In the ADNI cohorts, which included many patients with
mild cognitive impairments (MCI), we had to rely on the
biological PLM (Paris-Lille-Montpellier) scale [41] to
define populations with a low (ADNI(−)) and high
(ADNI(+)) prevalence of AD. This scale combines the
concentration of the three CSF biomarkers [Aβ42, tau,
p-tau (181)] into a probability scale for AD. The score
ranges from 0 to 3 based on the number of abnormal
CSF biomarkers. ADNI(−) population corresponded to
PLM scale of 0 or 1 with less than 25% of AD, while
ADNI(+) corresponded to PLM scale of 2 and 3 with
more than 75% of AD. Importantly, the PLM score used
was not based on the Aβ40 values so as to prevent circular
reasoning. This way of stratifying patients in the ADNI
cohort represents anyway a limitation of our study.

CSF samples and assays
CSF was collected using standard conditions of collection,
centrifugation, and storage [42, 43]. CSF tau and p-tau
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(181) concentrations were measured using the standardized
commercially available INNOTESTR sandwich ELISA,
Luminex® xMAP technology (x = analyte, MAP=Multi-An-
alyte Profiling) assays in line with the manufacturer’s in-
structions (Fujirebio-Europe). The consistency of the p-tau
(181) detection using the ELISA assays is ensured by its
comparison with the mass spectrometry detection per-
formed in this fluid [44]. In the Mtp-1 cohort, CSF Aβ1–42
and Aβ1–40 (denoted here by Aβ42 and Aβ40) were
measured with Euroimmun kits (EQ-6511-9601 (Aβ1–40);
EQ-6521-9601 (Aβ1–42)). In the Mtp-2 and Paris cohorts,
CSF Aβ42 and Aβ40 were measured using INNOTESTR

sandwich ELISA from IBL and Fujirebio, respectively, as
recommended by the manufacturer. Roche Elecsys auto-
mated chemiluminescence immunoassay (CLIA) and mass
spectrometry were used on the ADNI cohorts to measure
CSF Aβ1–42 and Aβ1–40 as previously described [45, 46].
Detection limits of these kits are compatible with CSF clin-
ical ranges. Average concentration of analytes may differ
between kits in relation with standard value assignments by
the vendors in the absence of certified reference materials.
The pre-analytical procedure was standardized [43]

but differed, depending on the type of collection tubes
used [36, 47]. This explains the differences observed
between cohorts in the mean Aβ40 and Aβ42 values
measured with the same detection kit (SupTable 1). The
quality of the results was ensured by using validated
standard operating procedures and internal quality
controls (QCs). The QC coefficient of variation obtained
on the CSF analytes in each batch and between batches
ranged consistently below 15%. In addition, external QC
procedures were used to confirm the quality/accuracy of
the results [42]. In the case of the ADNI cohorts, CSF
samples were deep frozen after the lumbar puncture
without performing any centrifugation or aliquoting, and
shipped to the UPENN ADNI Biomarker Laboratory
in Philadelphia on dry ice, where they were thawed,
aliquoted, and re-frozen.

Statistical analysis
Statistical analyses were computed with the MedCalc
software program (18.11.3). Data tested for normality
were expressed either as means ± SDs or as median
25th/75th percentile, and differences between groups
were taken to be significant in the Student t tests or the
non-parametric Mann-Whitney U test at P < 0.05. Linear
regression was computed between continuous biomarkers,
and the corresponding Pearson correlation coefficients and
statistical significance have been specified in the tables. For
meta-analysis of the study, we used the Hedges g statistic
as a formulation for the standardized mean difference
(SMD) under the fixed effects model. The SMD Hedges g
is the difference between the two means divided by the
pooled standard deviation. When indicated, statistical tests

were adjusted to account for the effects of covariates (age,
in particular). Odds ratios corresponded to the presence of
AD in the various percentile groups, based on the distribu-
tion of Aβ40. The 95% confidence odds ratio intervals were
computed along with the z-statistics and the associated
P values.

Results
CSF Aβ42 and Aβ40 in AD and NAD populations
CSF data on 2466 samples originating from six different
cohorts were included in the present study. The AD and
NAD populations were defined based on clinical criteria
in the Montpellier 1 (Mtp-1), Montpellier 2 (Mtp-2),
Paris, and Barcelona cohorts. For the ADNI cohort, we
relied on the PLM score to distinguish ADNI(+) and
ADNI(−) population. Differences were observed in terms
of age and CSF biomarker profiles in the overall popula-
tion, as well as in each clinical cohort (Table 1). As was
to be expected, AD patients obtained lower MMSE
scores and showed higher CSF tau and p-tau (181) levels
than NAD patients/participants. A significant decrease
in the CSF Aβ42 concentrations was observed in the AD
population (Fig. 1a), regardless of the cohort tested.
Noteworthy differences were also observed in the Aβ40
levels between all the cohorts (Fig. 1b): the values re-
corded in the AD population were significantly higher
than in the NAD group regardless of analytical method,
the sex, or the age as covariate. We then conducted a
meta-analysis study including the four independent
cohorts using the Hedges g statistic as a formulation for
the standardized mean difference (SMD) under the fixed
effects model (Fig. 2). The overall SMD with 95% CI is
at 0.5, which is greater than 0.2, the significance level.
The difference between AD and NAD population for
Aβ40 was however limited with an important overlap
resulting in AUCs lower than 0.8 (Sup Figure 2). The
stratification of the ADNI population using the PLM
scale (combining Aβ42, tau, and p-tau (181)) limits the
interpretation of the Aβ40 results of this cohort in our
study. We have nevertheless observed that the ADNI(+)
group, which by definition has less Aβ42, did indeed
have more Aβ40 (Fig. 1c). The physiological correlation
between CSF Aβ40 and Aβ42 [19] is therefore not well
preserved in AD.
When we stratified and combined the clinical cohort

populations into AD, MCI, FTD, Control (SCI), and
other neurological diseases (Other) groups, the difference
between AD and the other clinical groups was eventually
confirmed (Fig. 3a). We also performed a more in-depth
comparison, stratified by clinical groups. Importantly, the
Paris and SPIN-Barcelona cohorts are composed of only a
small number of pathologies whereas the Montpellier
cohorts have a wide range of diagnoses corresponding to
the Memory consultations (see the “Methods” section). As
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illustrated in the Sup Figure 3, we observed that AD
patients have significantly higher levels of Aß40 than most
other diagnostic groups, with the exception of MCI (in
two out of three cohorts, there was no statistical difference
between AD and MCI patients). However, this result is

not unexpected since the MCI group is itself heteroge-
neous, with some patients progressing to AD in subse-
quent years. As expected from previous studies [29, 30,
48], lowered Aß40 values for CAA and FTD were found.
This is even more pronounced for NPH, as expected [34].
Based on this stratification, we can conclude that the in-
crease in Aβ40 in the AD population is not a bias related
to the presence of certain diagnoses possibly present in
the NAD group.
The influence of APOE status, which was available in

the case of 983 samples (524 NAD with 36.6% E4+; 459
AD with 58.4% E4+), was also assessed with respect to
the Aβ levels (SupFigure 1A-F). As previously reported
[49, 50], the presence of ApoE4 was significantly associ-
ated with lower Aβ42 levels, as well as lower Aβ40
levels. The difference in Aβ40 values between NAD and
AD patients was also observed in both ApoE4 positive
and negative populations (SupFigure 1G-I).
To investigate more closely the relationship between

Aβ40 and AD diagnosis, the total population was sorted
into four percentile classes based on the value of this
biomarker in the CSF (< 25th, 25th–50th, 50th–75th,
and > 75th percentiles). The percentage of AD patients
in each cohort clearly increased along with the Aβ40
percentiles (SupTable2). To account for the differences
in AD prevalence between the cohorts, the odds ratios
for AD were plotted in the case of increasing Aβ40
percentile classes, and a significant increase ranging
from 0.4 to 1.8 was observed (Fig. 3b). To establish
whether the difference in age observed between NAD
and AD patients (SupTable 1) might be a significant
determinant here, the age distribution between percentile
classes was also plotted (Fig. 3c). A significant difference
in age distribution was observed only between the 50th/
75th and the > 75th Aβ40 percentile classes (Fig. 3c). Age
cannot therefore account for the association between
Aβ40 levels and AD prevalence. Nevertheless, further
statistical tests were adjusted using age as covariate.

Correlations between Aβ40 and the other CSF biomarkers
The correlation between Aβ40 and the other CSF
biomarkers was computed in global, NAD, and AD pop-
ulations, for each cohort, and in the overall population
(Table 2). As was to be expected [19], a correlation was
found to exist between Aβ40 and Aβ42, especially in the
NAD group. Aβ40 was also correlated with the tau
levels, and it was striking that the highest correlation
coefficients were obtained with p-tau (181) rather than
with t-tau, especially in the Mtp-1 cohort (a significant
difference was observed between the correlation coeffi-
cients at P = 0.02). The correlation was clearly visible
when the mean-centered p-tau (181) values were plotted
in the various Aβ40 percentile classes (Fig. 3d), showing
significant differences between classes. This correlation

Fig. 1 CSF Aβ42 and Aβ40 in non-AD and AD populations. CSF
concentration of Aβ42 (a) and Aβ40 (b) in four independent cohorts
(Montpellier 1 (Mtp-1), Montpellier 2 (Mtp-2), Paris, SPIN-Barcelona)
confirmed the significant difference between NAD and AD patients
for both analytes (t test). Differences in CSF Aβ40 measured in two
ADNI cohorts (c) were also significant between ADNI(+) and ADNI(−)
patients stratified using the PLM scale (see the “Methods” section).
Note that Aβ has been assessed using five different detection
methods (supTable 1)
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had to be put in perspective with the fact that both ana-
lytes increased in AD with the patients’ age (SupTable 1),
which justifies the adjustments made for age in our stat-
istical analysis. We illustrated graphically the correlation
between p-tau (181) and Aβ40 in the all NAD and the
AD populations (Fig. 4a, b). We noticed that p-tau (181)
values were higher and more widely distributed in the
AD population with a regression slope that was higher
than in the NAD population. To document further the
relationship between Aβ40 and p-tau (181) outside the
context of AD, the correlation was tested in a series of
clinically defined patients with multiple sclerosis [51]
and FTD [52] (Fig. 4c, d). The corresponding correlation
coefficients were both significantly higher in these
groups than in the AD population (P < 0.001).

Discussion
The decrease in Aβ42 observed in the CSF of AD
patients has attracted considerable attention in clinical
and research communities. This decrease is attributable
to the accumulation of Aβ42 in the brain parenchyma,
along with a decrease in the rates of CSF clearance and
an increase in the production of oligomeric/multimeric
forms. Since determining the CSF Aβ42/Aβ40 ratio
provides a useful means of improving AD diagnosis [26],

many groups are now also measuring Aβ40 in their
patients. A meta-analysis was however not conclusive
regarding its differential levels in AD [35]. Looking back
in detail at various studies, Aβ40 either was lower or
showed no significant changes [21, 29, 30, 53], or appar-
ently increased in AD in comparison with other forms of
dementia [54, 55]. In a recent report, the increase in
Aβ40 was clearly identified as one of the reasons for the
good performances of the Aβ42/Aβ40 ratio as an index
[20], while another study on PET amyloid findings also
established that CSF Aβ40 increased in the PIB+ popula-
tion [56]. These discrepancies might be linked to differ-
ences in cohort composition, since the Aβ40 levels may
be affected by various pathological conditions [29–31].
The stage of AD, corresponding to various levels of cere-
bral atrophy probably reducing amyloid production [18],
may also account for differences between studies. This is
coherent with a recent study confirming the increase of
Aβ40 in prodromal AD [57]. Differences in the precision
of the analytical methods used, combined with the size
of the cohorts, might also explain why only a small, non-
significant difference between AD and NAD patients has
been observed in some cases.
Nevertheless, the present study on CSF Aβ40 which

confirms it increased in AD can be considered a “surprise.”
The fact that this result has not been clearly identified
previously is due to several factors, the first being that since
the differences between populations are small, statistical
significance requires a larger number of samples and meas-
urement methods that are as accurate as possible. Using
large cohorts, we were able to confirm the existence of an
age- and ApoE-independent increase in CSF Aβ40 in AD
compared with other diagnostic consisting mostly of con-
trols and patients with other neurodegenerative diseases
and dementia. This observation is valid in different analyt-
ical contexts despite differences in the threshold or range
for biomarker measurement. Our finding provides add-
itional explanations for the very good diagnostic perform-
ance of the Aβ42/40 ratio calculation [20]. Interestingly,
Janelidze et al. [58] observed that some Aβ42 assays were
partly quenched by Aβ40. An increase of Aβ40 in AD as
suggested by our study may therefore also indirectly con-
tribute to the diagnostic performance of Aβ42. It is worth
mentioning that in the blood, where the amyloid peptide
42/40 ratio could well indicate the presence of brain amyl-
oidosis [59, 60], it has been established that high Aβ40
levels are associated with greater mortality rate in the eld-
erly [61]. The fact that the CSF and blood amyloid levels
are poorly correlated, however, makes it difficult at this
stage to extend the present conclusions to this fluid.
The overlap in the CSF Aβ40 values between the AD

and NAD populations is worth noting, and the area
under the receiver operating characteristic curve (AUC)
for AD diagnosis was under 0.8 in all the cohorts tested

Fig. 2 Meta-analysis including the four independent cohorts. We used
with to compare the Aβ40 means between AD and NAD populations
the Hedges g statistic as a formulation for the standardized mean
difference (SMD) under the fixed effects model. The SMD Hedges g is
the difference between the two means divided by the pooled
standard deviation. The plot has marker sizes relative to study weight.
The results of the different studies, with 95% CI, and the overall
standardized mean difference with 95% CI are shown. Cohen’s rule of
thumb for interpretation of the SMD statistic is that a value of 0.2
indicates a small effect, a value of 0.5 indicates a medium effect, and a
value of 0.8 or larger indicates a large effect
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Fig. 3 Aβ40 in different diagnoses; representation in percentile; AD odds ratio, age, and p-tau (181) distribution. The Montpellier, Paris, and SPIN-
Barcelona cohorts displayed a large range of pathological samples from patients with Alzheimer’s disease (AD), mild cognitive impairment (MCI),
frontotemporal dementia (FTD), Control (subjective cognitive impairment), and the other neurological diseases (Other) (see also Sup-Figure 3).
Mean-centered Aβ40 values in these cohorts were combined and compared in the different clinical groups confirming the significant increase of
the peptides in AD (a). The four cohorts (Montpellier 1 (Mtp-1), Montpellier 2 (Mtp-2), Paris, SPIN-Barcelona) have been sorted in four classes
based on their Aβ40 percentile values as follows: p25, < 25th percentile; p25–50, 25th–50th percentile; p50–75, 50th–75th percentile; and p75, >
75th. The odds ratio for AD (b), the age of the patients (c), and the concentration of CSF p-tau (181) (d) were then plotted in each percentile
class. Significant differences between classes are indicated

Table 2 Age-adjusted Pearson’s correlation between Aβ40 and Aβ42, tau, or p-tau (181) values in the six cohorts (Montpellier 1
(Mtp-1), Montpellier 2 (Mtp-2), Paris, SPIN-Barcelona, ADNI-MS, ADNI-Elecsys), in the overall population using mean-centered values
to account for level differences between analytical methods

Aß40
correlation

All NAD or ADNI(−) AD or ADNI(+)

p-Tau Tau Aß42 p-Tau Tau Aß42 p-Tau Tau Aß42

Mtp-1 0.501 0.377 0.520 0.557 0.235* 0.764 0.504 0.443 0.613

Mtp-2 0.514 0.443 0.407 0.430 0.244 0.533 0.304 0.213* 0.469

Paris 0.419 0.36 0.188 0.421 0.145* 0.571 0.288 0.245 0.247

SPIN-Barcelona 0.468 0.396 0.161 0.483 0.348 0.419 0.355 0.256* 0.308*

ADNI-MS 0.254 0.413 0.505 0.257 0.496 0.705 0.223* 0.470 0.574

ADNI-Elecsys 0.536 0.567 0.449 0.487 0.624 0.782 0.502 0.496 0.580

Overall 0.445 0.418 0.368 0.455 0.318 0.615 0.339 0.318 0.426

Computation has been done in the All population and in the NAD, AD, ADNI(−), and ADNI(+) groups. Correlation coefficient statistical value P < 0.001 for all
but *P < 0.01

Lehmann et al. Alzheimer's Research & Therapy          (2020) 12:123 Page 8 of 12



(SupFigure2). CSF Aβ40 cannot therefore be used as a
diagnostic biomarker but could be taken to be a
feature “risk factor” in view of the odds ratio of
almost 2 recorded on the population having the
highest CSF Aβ40 concentration. The increased Aβ40
might be a consequence of a reduced clearance of
amyloid peptides in sporadic cases and/or a higher
production-lower degradation. This matches the fact
that in autosomal dominant forms of AD linked to
APP or presenilin mutations [3, 5] and in Down
syndrome [4], an overproduction of amyloid peptides
is thought to trigger the AD process, along with all its con-
sequences, including tau protein hyper-phosphorylation, in
particular.
In this context, baseline Aβ40 concentration could

indicate subjects with risk of early AD development.
The positive correlation found to exist in the present

study between Aβ40 and p-tau (181) in AD is an add-
itional argument supporting this pathophysiological
model. Tau has many phosphorylated isoforms [62, 63],
some of them believed to be more specific for AD than
p-tau (181), highlighting the pathophysiological role
and therapeutic interest of kinases like PKA, CAMkII,
or Cdk5. This isoform is however one of the best indi-
cators of AD pathology in the CSF where it begins to
increase as two decades before the development of
aggregated tau pathology [44]. In this work, we had to
rely only on the correlation with p-tau (181) because it
is the only isoform with in vitro diagnostic (IVD) certi-
fication and has been measured in large clinical co-
horts. The fact that this correlation was also present in
a control population including a subgroup of well-
defined FTD [52] and multiple sclerosis patients [51]
raises many questions, however. It is tempting to take

Fig. 4 Correlation between Aβ40 and p-tau (181) in different clinical populations. To illustrate the correlation between Aβ40 and p-tau (181)
(Table 2), the mean-centered concentrations of the two analytes in the total study population were plotted in NAD (a) and AD populations (b).
Aβ40 and p-tau (181) concentrations were also plotted in a selection of multiple sclerosis (c) and FTD patients (d)
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this relationship to confirm that Aβ peptides may
induce the phosphorylation of tau, as observed both
in vitro and in vivo [64].

Limitation
Since the present study was based on a cross-sectional
design, and without neuropathological confirmation,
further studies involving a longitudinal design are now
required to confirm the idea that high baseline CSF
levels of Aβ peptides may have prejudicial effects, lead-
ing to AD.

Conclusions
In conclusion, our results indicate that an increase in
the baseline level of amyloid peptides, which are associ-
ated with an increase in p-tau (181), could be a bio-
logical characteristic of AD. Further studies will be
needed to establish a causal link between increased base-
line levels of Aβ40 and the development of the disease.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13195-020-00696-1.

Additional file 1 : SupTable 1. Number of patients/samples in each
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Additional file 3 : Sup-Figure 1. CSF Aβ42 and Aβ40 in Non-AD and
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Aβ42 (panels A-C) and Aβ40 (panels D-F) in total (all), NAD and AD popu-
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illustrate the difference in Aβ40 between AD and NAD in the population
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bral amyloid angiopathy (CAA), frontotemporal degeneration (FTD), mild
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osis, Parkinson’s disease, Lewy Body dementia..) (Other) and control
(subjective cognitive impairment). Box plots with median and 25th/75th
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