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had significantly reduced T2 compared to healthy con-
trols. However, longitudinally, T2 in Alzheimer’s disease
patients was seen to increase. The currently presented
model explains these results in terms of a shift in the
dominance of factors that increase or decrease T2
throughout the progression of Alzheimer’s disease.
Macromolecular pathological hallmarks cause T2 to de-
crease in the first instance, which later causes physical
damage to the structure, causing T2 to increase as the
disease progresses (Fig.6), as is seen in the majority of
studies on T2 in Alzheimer’s disease [26–30].

There is, of course, considerable debate as to the role
of plaques in Alzheimer’s disease pathology (for a review
see [60]) and some question as to the disease-specificity
of iron accumulation [36, 61]. Indeed, plaques have been
found in the brains of many people without any other
sign of Alzheimer’s disease, particularly in the hippo-
campus [62, 63]. Oligomeric A� , however, could still
have T2-shortening effects in the brains of people with
early Alzheimer’s disease. The presence of some T2-
shortening factors even in those with no Alzheimer’s
disease-specific pathology could explain the lack of cor-
relation between hippocampal T2 midpoint and age in
healthy control participants. In further support of this,
we do see a strong correlation between T2 midpoint and
age in the thalamus, a region which is less likely to

display pathology in a healthy control cohort [14, 63].
This is discussed further insupplementary information.
T2-shortening could also be caused by iron in microglia
which are recruited in response to inflammation. Al-
though inflammation is a factor in Alzheimer’s disease,

Fig. 5 Schematic diagram of T2 distribution profiles in ageing and Alzheimer’s disease. Midpoint values for each hypothetical distribution are
represented by orange bars and ‘μ’ markers on each x-axis. Green and red arrows represent factors that increase or decrease T2, respectively. The
number of arrows represents the relative dominance of each effect. In summary, the model suggests that factors that increase T2 are present in
both healthy ageing and Alzheimer’s pathology; however, factors that decrease T2 are more dominant in Alzheimer’s disease. Early Alzheimer’s
disease pathology is characterised by an increase the distribution without an increase in the midpoint

Fig. 6 Theoretical model of T2 dynamics in a single voxel in the
brain throughout the course of Alzheimer’s disease. A given region
in the brain of someone with incipient Alzheimer’s disease would
consist of many voxels at different stages of this curve, depending
on the degree of Alzheimer’s pathology in a given location. This
heterogeneity is what will cause the average or midpoint T2 to
remain relatively static, and the distribution width to increase, until
very late stages when all voxels reach the ‘high T2’ state
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it could also be present in response to comorbidities like
cardiovascular disease [64]. Conversely, cardiovascular
disease could also reduce blood flow to the brain, poten-
tially reducing the iron and causing T2 to increase. Un-
fortunately, amyloid and iron status of the current
studies’ participants were not available, so the higher
number of voxels with low T2 cannot be directly attrib-
uted to either factor. Future work could aim to coloca-
lise areas of low T2 with A� , for example with positron
emission tomography (PET), and brain iron levels by
measuring field dependent relaxation rate increase
(FDRI) as was conducted by Raven et al. [65].

Despite some presence of A� and iron in healthy age-
ing, various studies suggest that the two factors combine
in Alzheimer’s pathology, leading to the much greater
T2-shortening effects seen in Alzheimer’s disease. A
study by El Tannir El Tayara et al. [23] showed that T2
in the hippocampus (specifically in the subiculum) was
decreased in a mouse model of Alzheimer’s disease that
produced amyloid deposits (APP/PS1), compared to an-
other model that does not form such deposits (PS1).
The authors attribute this, at least in part, to the coloca-
lization of amyloid and iron. Such histological colocali-
zation has also been reported by Falangola et al. [66].
Excess iron can not only contribute to oxidative stress in
and of itself, but can also contribute to A� and NFT
misfolding [67], thereby exacerbating Alzheimer’s path-
ology. Numerous studies are supportive of the idea that
a combination of iron and A� cause significant T2 short-
ening [23, 35, 66, 68–73]. This also has implications for
Lewy body diseases such as Parkinson’s disease, which is
also characterised by increased iron deposition [36].

Potential clinical utility of T2 relaxometry
Understanding T2 dynamics in preclinical Alzheimer’s
disease and healthy ageing offers the potential for great
clinical benefit. If Alzheimer’s pathology can be detected
using MRI prior to the onset of hippocampal atrophy,
significant change in cognition, or loss of daily inde-
pendence, patients may receive treatment much earl-
ier—at a stage where neurodegenerative damage is
preventable or even reversible. Additionally, as our pilot
data show [25], T2 heterogeneity outperforms more
traditional measures of microstructural integrity in the
identifying pathology.

In this study, we show that T2 heterogeneity can pre-
dict cognitive decline in the MCI group where volume
and T2 midpoint cannot. This effect was significant after
regressing out the effect of age suggesting that it does
relate to pathology or other age-independent brain
changes. Furthermore, any test-retest variability in the
cognitive tests used would likely only introduce noise ra-
ther than systematic bias. We therefore believe this re-
sult to be robust.

Hippocampal volume is the one of the most widely
studied and effective predictors of cognitive decline (for
a review, see de Flores et al. [74]). However, rather than
measuring pathology itself, volumetry measures tissue
atrophy, a consequence of pathology. T2 increases also
measure consequences of pathology, in the form of in-
creased regional CSF, oedema or cell membrane break-
down; however, it is a more sensitive measure and may
indicate subtle damage before macroscopic atrophy is
detectable. Furthermore, T2 decreases may measure key
features of Alzheimer’s pathology itself, such as iron, A�
and NFT deposition that can occur before hippocampal
shrinkage [75]. Measuring T2 heterogeneity allows these
opposing factors to be considered, as they may indicate
slightly damaged tissue that has the potential for thera-
peutic rescue. Measuring T2 distribution width com-
pared to age-corrected normative data may be indicative
of physical damage beyond what should be expected for
a given age. Given systematic differences in T2 between
pulse sequences (as seen in Supplementary Tables1–4),
exact normative data would have to be standardised for
a given sequence. However, as we see consistent results
across two cohorts with two different pulse sequences,
we expect these results to be highly generalisable across
sequences. These markers may compliment or even sur-
pass volumetry in predicting future cognitive decline. As
neuroimaging, often MRI, is part of routine clinical
screening processes for neurological disease, this method
is highly practical and easily translatable.

It is important to highlight that even though our re-
sults are largely discussed in the context of AD, an in-
crease in the distribution of T2 is likely not specific to
AD per se, but rather may be a highly versatile novel
measure of microstructural integrity that can be applied
to the diagnosis of many diseases. It is likely to be par-
ticularly useful in any disease characterised by factors
which both increase and decrease T2, in which changes
in T2 midpoint would be masked. This may include
many neurodegenerative disorders, particularly those
where age is a risk factor, such as dementia with Lewy
bodies, Parkinson’s disease or vascular dementia. MCI is
also a risk factor for these disorders [76, 77], and path-
ology for these conditions is likely present within our
MCI population. As with any structural measure, it will
be the spatial and temporal patterns of microstructural
changes throughout the brain which may be specific to a
given disease. This study focused on the MTL and thal-
amus in groups with high risk of AD pathology, thus dis-
cussion centres mostly around AD. However, non-AD
disease pathology may also be present in our MCI co-
hort also causing increased T2 heterogeneity in the
hippocampus and/or thalamus.

With further research to characterise the pattern of
microstructural changes in T2 distribution and volume
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within the brain, perhaps by looking in closer detail at
subfields of the MTL, T2 heterogeneity may be used to
develop more specific diagnostic criteria early on in the
disease process. If this is the case, MRI may become a
non-invasive alternative to CSF biomarker analysis and a
cheaper option than amyloid or tau PET scanning, both
of which can detect very early AD pathology [78, 79].
Furthermore, although CSF biomarkers provide a good
overview of the presence of pathology, T2 heterogeneity
allows direct quantification of tissue which, although
damaged, may stand a chance of therapeutic rescue, and
may therefore predict treatment efficacy on a patient by
patient basis. The combined value of T2 heterogeneity
and CSF biomarkers is, of course, an exciting avenue for
future research.

In addition to the clinical utility of T2 heterogeneity
described here, T2 heterogeneity also has potential for
use in basic and translational research. Current studies
of the function of human hippocampus and its constitu-
ent subfields, for example, often involve assessing rela-
tionships with volume, despite limitations of the‘bigger
is better’ hypothesis (see review by Petten [80]). T2 het-
erogeneity may be used to identify tissue that is extant
but dysfunctional, which may otherwise confound volu-
metry, leading to more accurate assessment of the
amount of ‘healthy’ tissue present. This, of course, has
the potential for application to other brain areas and
may contribute to an overall better understanding of
brain-behaviour relationships in health and disease.

Limitations
With the exception of some of those who have actually
received a clinical diagnosis of Alzheimer’s disease in
study 1, the amyloid status of these participants is un-
known. Amyloid (measured either in CSF or using PET)
is one of the most commonly used biomarkers to in-
crease certainty of the presence of Alzheimer’s disease
pathology. Those who present with mild cognitive
impairment often are only classified as MCI based on
presentation of cognitive symptoms. Such cognitive
impairment could be caused by factors other than
Alzheimer’s pathology, including other dementias,
stroke, pharmaceutical side effects and sleep problems to
name a few. Further work is required to understand the
ability of T2 heterogeneity to rule out causes of MCI not
related to dementia.

Secondly, although we present results in a relatively
large sample of healthy older controls and people with
MCI, we are limited by our small sample of Alzheimer’s
disease patients. This is primarily because they were only
recruited as a part of study 1. This limits the statistical
significance of some of the effects that we describe, and
therefore conclusions from this group are slightly tenta-
tive. This is acknowledged throughout interpretation of

these results, which we expect to be reproducible with a
larger sample size. The lack of any observed statistical
difference between MCI and AD groups is also further
discussed insupplementary information.

Thirdly, this study combines two distinct participant
cohorts, the methodology of which differ in two key
ways: (i) the test used to measure general cognitive abil-
ity (study 1: MoCA; study 2: ACE-III) and (ii) the MRI
sequence used to quantitatively assess T2 (study 1: 10-
echo CPMG; study 2: 3-echo TSE). For these data, we
have normalised within-cohort (calculatedZ scores) and
combined data after normalisation. Given that the co-
horts are similar in almost every other way, and these
methods are purported to measure the same underlying
principles, the benefits of a larger sample size provide
ample justification for combining cohorts as we have
done.

Finally, the only regions studied here, hippocampus
and thalamus, are both regions known to be affected by
Alzheimer’s pathology at early stages. Future studies
would benefit from exploring T2 dynamics in other
brain regions, including those that are not directly impli-
cated in early Alzheimer’s disease. This is not possible
with existing data for either study 1 or study 2, as the
multi-echo T2 scans acquired do not cover the whole
brain. Future analyses should also focus on subdivisions
in these regions, such as T2 differences between MTL
subfields and across individual thalamic nuclei, which
have different susceptibility to AD pathology.

Conclusions
In this paper, we show that T2 heterogeneity is a good
measure of microstructural integrity of brain tissue. We
propose a model (Fig.5) that suggests factors that in-
crease T2 are indicative of microstructural damage but
are not necessarily specific signs of Alzheimer’s path-
ology. Rather, factors that decrease T2 are prevalent in
Alzheimer’s pathology and may occur in the earliest
stages of disease (Fig.6). These two opposing forces act
to balance out the mean in prodromal Alzheimer’s dis-
ease, causing varied results in the human literature. The
model makes specific and testable predictions about the
temporal dynamics of T2 alterations throughout ageing
and prodromal Alzheimer’s disease. It also highlights po-
tential early indicators of Alzheimer’s disease, allowing
Alzheimer’s disease-related cognitive decline to be dis-
tinguished from that seen in healthy ageing. We show
that T2 heterogeneity surpasses midpoint T2 and the
more established measure of volumetry in predicting
cognitive decline in those with MCI.

This study represents one of the first studies of T2
heterogeneity within the brain in MCI and Alzheimer’s
disease, and the first to show its utility in predicting cog-
nitive decline.
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