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Abstract

Background: Optimization of vascular risk factor control is emerging as an alternative approach to improve
cognitive outcomes in Alzheimer’s disease, although its efficacy is still under debate. We aimed to investigate the
contribution of vascular risk factors on Alzheimer’s biomarkers and conversion rate to dementia in subjects with
mild cognitive impairment (MCI) with low cerebral small vessel disease burden.

Methods: Two hundred ninety-five newly diagnosed MCI subjects were enrolled from March 2005 to May 2017 for
a cross-sectional assessment of vascular risk factors and Alzheimer’s plasma and imaging biomarkers, followed by a
cognitive outcome assessment 24 months after enrollment. The association between vascular risk factors and
Alzheimer’s biomarkers were tested using multivariable linear regression models adjusted with age, gender,
education, and APOE ε4 allele. The association between vascular risk factors and conversion to dementia was tested
using multivariable logistic regression models adjusted with age, gender, education, and baseline Mini-Mental State
Examination (MMSE) score.

Results: At baseline, higher low-density lipoprotein (LDL) cholesterol level was associated with more advanced
plasma biomarkers, including Aβ42/Aβ40 ratio (P = 0.012) and tau level (P = 0.001). A history of hypertension was
associated with more advanced white matter hyperintensity (P = 0.011), while statin therapy for dyslipidemia was
associated with less advanced white matter hyperintensity (P = 0.002). At 24 months, individual vascular risk factor
was not significantly associated with cognitive outcome. By contrast, statin therapy for dyslipidemia was associated
with reduced conversion to dementia (adjusted OR = 0.191, 95% CI = 0.062~0.586, P = 0.004).

Conclusions: For MCI subjects, dyslipidemia may contribute to AD-related neurodegeneration while hypertension
may contribute to vascular pathology. The association between statin therapy for dyslipidemia and reduced
conversion to dementia supports further interventional study to evaluate the potential beneficial effect of statin in
MCI subjects.

Keywords: Alzheimer’s disease (AD), Low-density lipoprotein (LDL) cholesterol, Mild cognitive impairment (MCI),
Plasma biomarkers, Vascular risk factors
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Background
Alzheimer’s disease (AD) is the leading cause of demen-
tia in the elderly population, and its rapidly increasing
disease burden challenges health-care and socioeco-
nomic systems worldwide [1]. Despite intense efforts in
AD drug development in the past decades, there is so far
no established disease-modifying therapy that can slow
neurodegeneration in AD [2–4]. Traditional approaches
for disease-modifying therapy target the amyloid cascade
and tauopathy. By contrast, the optimization of vascular
risk factor control is emerging as an alternative ap-
proach. Vascular cognitive impairment (VCI) refers to
cognitive impairment associated with cerebrovascular
disease [5]. While control of vascular risk factors
remained the main treatment strategy for VCI, whether
risk factor modification prevents cognitive decline
remained controversial [6]. Approximately half of clinic-
ally probable AD subjects have mixed brain pathology,
most commonly Alzheimer’s disease pathology and
microvascular infarcts [7]. For patients with clinical AD,
concurrent vascular pathology was associated with more
advanced cognitive impairment in several autopsy [8, 9]
and neuroimaging [10, 11] studies. These findings in-
spired the idea that therapies targeting vascular path-
ology may slow cognitive decline not only in patients
with VCI but also in patients with clinical AD [12].
Observational studies support the idea that vascular

risk factor control may reduce cognitive decline in the
non-demented elderly population [13, 14] and in sub-
jects with mild cognitive impairment (MCI) [15, 16].
The 2-year follow-up results of the Finnish Geriatric
Intervention Study to Prevent Cognitive Impairment and
Disability (FINGER) [17] showed significantly improved
overall cognitive performance and executive function in
at-risk elderly subjects who received multicomponent
lifestyle intervention involving physical activity, nutri-
tional guidance, cognitive training, social activities, and
management of cardiovascular risk factors. Recently
published results from the Systolic Blood Pressure Inter-
vention Trial (SPRINT) showed that intensive blood
pressure control (systolic blood pressure target < 120
mmHg) targeting hypertensive subjects with increased
cardiovascular risk reduced the incidence of MCI [18].
However, the benefit of vascular intervention in subjects
with preclinical AD or MCI has not yet been proven by
randomized controlled trials [19]. The Evaluation of
Vascular Care in Alzheimer’s Disease (EVA) study
showed a non-significant result in either mesial temporal
lobe atrophy or cognitive decline in subjects with clinical
AD and concurrent cerebrovascular lesions who received
multicomponent vascular care for 2 years [20, 21]. Add-
itionally, whether vascular pathology acts independently
or synergistically with Alzheimer’s pathology in causing
cognitive decline remains under debate.

In this observational study, we aim to investigate the
impact of vascular risk factors on Alzheimer’s disease-
related pathology by (1) assessing the cross-sectional asso-
ciation between vascular risk factors and AD-specific
plasma and imaging biomarkers and (2) assessing the as-
sociation between baseline vascular risk factors and 2-year
cognitive outcome in subjects with mild cognitive impair-
ment (MCI) who have low concurrent cerebral small ves-
sel disease (SVD) burden. Our hypothesis is that even in
subjects with MCI and low cerebral SVD burden, vascular
risk factors may not only contribute to cerebrovascular
pathology, but also accelerate Alzheimer’s pathology.
Through their contributions to both the cerebrovascular
pathology and Alzheimer’s neurodegeneration, vascular
risk factors may further accelerate cognitive decline.

Methods
Study design and participants
Subjects who visited the neurology clinic at National
Taiwan University Hospital for cognitive complaints and
were diagnosed to have MCI were recruited prospect-
ively from March 2005 to May 2017. The age range for
recruitment was 50 years or older. The diagnosis of MCI
was made based on standardized neuropsychological as-
sessment (Supplementary Table 1) and according to the
core clinical criteria recommended by the 2011 National
Institute on Aging-Alzheimer’s Association workgroups
[22]. We excluded subjects who had major systemic dis-
eases (e.g., major cardiopulmonary diseases, or advanced
renal or hepatic diseases), neurological diseases (e.g.,
epilepsy, history of stroke, brain tumor, traumatic head
injury, or other known neurodegenerative diseases sug-
gested by medical history or neurological assessment), or
psychiatric diseases that may interfere with cognitive
performance; subjects who were illiterate or had signifi-
cant visual or auditory problems that precluded them
from neuropsychological assessment; and subjects who
refused or were not able to receive brain MRI study. To
limit our study population to MCI subjects with low
cerebral SVD burden, we excluded subjects who had se-
vere leukoaraiosis, defined as a Fazekas score of three, or
lacunas on a brain MRI. After enrolment, participants
received standardized vascular risk factor surveys, struc-
tural brain MRI exams, and plasma biomarker measure-
ments. During the 2-year follow-up period, global
cognitive performance and functional status were
assessed using the Mini-Mental State Examination
(MMSE) and Clinical Dementia Rating (CDR) scores at
an annual interval or whenever a decline in cognitive
function was reported by the participant or their family
members. Conversion to clinical probable AD dementia
was defined based on the core clinical criteria proposed
by the 2011 National Institute on Aging-Alzheimer’s
Association workgroups [23].
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Clinical information and vascular risk factors survey
Participants received a vascular risk factor survey with a
structured questionnaire and a cross-sectional fasting
blood test. The history of individual vascular risk factors,
including hypertension, diabetes mellitus, dyslipidemia,
and habitual tobacco smoking, was recorded. For each
risk factor, disease status was coded as without relevant
disease, with known disease and under medical treat-
ment, or with known disease but not under medical
therapy. Plasma biochemical measurements included
total cholesterol, triglycerides, low-density lipoprotein
(LDL) cholesterol, high-density lipoprotein (HDL) chol-
esterol, fasting plasma glucose, and hemoglobin A1c
(HbA1c). Hypertension was defined according to the
subject’s reported past history and verified by their med-
ical record and active medication list. Subjects who re-
ported having hypertension and either had documented
hypertension in the medical record or were receiving an-
tihypertensive agents were recorded as having hyperten-
sion. Dyslipidemia was defined whenever the subject had
a total cholesterol level > 200 mg/dl, an LDL cholesterol
level > 130mg/dl (or > 100mg/dl for subjects with concur-
rent diabetes mellitus), a triglyceride level > 200mg/dl, or
for whoever received a long-term lipid-lowering agent.
Diabetes mellitus was defined according to the subject’s
reported past history or if the patient had an HbA1c
level > 6.5%. Habitual tobacco smoking was defined if the
subject had smoked 100 or more cigarettes during their
lifetimes.
Apolipoprotein E (APOE) genotyping was also per-

formed to assess this possible confounding factor associ-
ated with Alzheimer’s biomarkers.

Neuroimaging and plasma biomarkers
Brain magnetic resonance imaging (MRI) was performed
on a 1.5 T MRI scanner. The scanning protocol included
axial T2-weighted-fluid-attenuated inversion recovery
(T2-FLAIR), fast spin-echo T2-weighted sequences, and
a coronal T1-weighted image (T1WI) or a 3D T1WI.
The axial slices were positioned to run parallel to a line
that joins the most inferoanterior and inferoposterior
parts of the corpus callosum and had a thickness of 5
mm with a gap of 1.5 mm. To represent AD-related early
structural changes, the entorhinal cortical thickness and
hippocampal volume were measured quantitatively on
T1-weighted structural MRI scans using the FreeSurfer
software (version 5.3) (http://surfer.nmr.mgh.harvard.
edu/). The Desikan-Killiany cortical atlas was used for
cortical parcellation [24]. White matter hyperintensity
(WMH) was rated using a visual scoring system modi-
fied from Fazekas et al. [25], and each brain MRI scan
was rated from 0 to 3 on the coronal view of the FLAIR
series across the frontal and parietal lobes on either side.
For each participant, we calculated the average WMH

score from the abovementioned four brain areas, with a
higher score indicating more extensive leukoaraiosis.
Subjects enrolled after July 2015 were included for

plasma biomarker measurements. Plasma levels of amyl-
oid β (Aβ)40, Aβ42, and total tau were detected using
the immunomagnetic reduction (IMR) technique as pub-
lished by Chiu et al. [26, 27]. As shown in previous stud-
ies using the IMR assay, an elevated plasma Aβ42/Aβ40
ratio and elevated plasma tau were detected in patients
with AD [27, 28] and were associated with disease sever-
ity [27]. The plasma Aβ42 level detected by IMR was
negatively associated with the CSF Aβ42 level deter-
mined by ELISA [29] and positively associated with cere-
bral amyloid deposits on PibPET [30]. The plasma tau
level was negatively associated with memory functions
and mesial temporal cortical thickness in subjects with
MCI and AD [31].
Sample size was calculated using the software G*Power

(version 3.1) to estimate the number of subjects needed
to detect the relationship between vascular risk factors
and plasma biomarkers in multiple linear regression
models. To detect medium effects (effect size f2 = 0.15)
of tested variables on plasma biomarker at a two-sided
0.05 significance level and under the correction of four
covariates, a total of 92 subjects will be needed to
achieve 80% power. Ninety-nine subjects were enrolled
for plasma biomarker measurements.

Statistical analysis
Independent t tests for continuous variables and chi-
square tests or Fisher’s exact tests for categorical variables
were used to compare the between-group differences in
demographic variables. To assess the cross-sectional asso-
ciation between vascular risk factors and individual neuro-
degenerative biomarkers, we performed multivariable
linear regression analysis. The association between indi-
vidual vascular risk factors and neurodegenerative bio-
markers were tested in linear regression models
covariated with age, gender, education, and APOE geno-
type. We used the false discovery rate method proposed
by Benjamini et al. to adjust for multiple comparisons
[32]. Only vascular risk factors with the false discovery
rate controlled below 0.05 were included for further step-
wise regression analysis (Supplementary Table 2 and Sup-
plementary Table 3). The forward stepwise selection
method (P value < 0.1 for entry and P value > 0.2 for re-
moval) was used to construct models of factors associated
with AD biomarkers. Additional models covariated with
history of lipid-lowering medications and plasma lipid
measurements were constructed to assess the association
between dyslipidemia and neurodegenerative biomarkers.
To assess the association between vascular risk factors
and cognitive outcome at 24 months, multivariable logistic
regression models covariated with age, gender, education,
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and baseline MMSE score were applied to estimate the
odds ratio (OR) and the 95% confidence interval (CI) for
conversion to clinical probable AD dementia. A P value
less than 0.05 was considered statistically significant. Data
were analyzed using the statistical software PASW for
Windows, version 22.0.

Standard protocol approvals, registrations, and patient
consents
The study was approved by the ethics committee of the
National Taiwan University Hospital. All participants
provided written informed consent before enrollment.

Results
Two hundred and ninety-five MCI subjects were re-
cruited from March 2005 to May 2017. The demo-
graphic profile of the participants is summarized in
Table 1. The mean age of the participants was 72.7 years
(SD 8.8). Fifty-six percent of the participants were fe-
male, 26% were APOE ε4 carriers, and the median edu-
cational level was 12.0 years (IQR 6.0–15.0). The median
baseline MMSE score upon recruitment was 27.0 points
(IQR 25.0–28.0). Eighty-three percent of the participants
had amnestic-type MCI. Most of the participants with
non-amnestic type MCI had impaired executive func-
tion. On the other hand, 46% of the participants with
amnestic type MCI had concurrent executive function
impairment.
Regarding concurrent vascular risk factors reported by

the participants or their informants, 56% of the enrolled
subjects had hypertension, 17% had diabetes mellitus,
33% had dyslipidemia, and 16% were habitual smokers.
Most of the subjects who had hypertension or diabetes
received regular medications for disease control. Among
subjects who had dyslipidemia, only 41% of them re-
ceived regular lipid-lowering medications (i.e., statin),
18% of them were aware of but did not receive medica-
tion for the disease, and 41% of them were not aware of
their abnormal lipid profile before recruitment.

Vascular risk factors and plasma biomarkers for
Alzheimer’s disease
Ninety-nine subjects in the cohort had a plasma sample
available for biomarker measurements. There was no
significant difference in the prevalence of vascular risk
factors between subjects with and without plasma bio-
marker measurements (Supplementary Table 4). Sub-
jects who had a plasma sample available for biomarker
analysis were younger (70.1 vs. 74.0 years old) and had a
higher educational level (12.1 vs. 9.7 years) and a higher
baseline MMSE score (27.1 vs. 26.0) than those who did
not have an available plasma sample.
In the multiple linear regression model adjusted for age,

gender, educational level, and APOE ε4 carrier status, the

LDL cholesterol level was positively associated with the
plasma tau level (B estimate = 0.146, 95% CI =
0.064~0.228, standardized β = 0.411, P value = 0.001). Both
the LDL cholesterol level (B estimate = 0.001, 95% CI =
0.0003~0.002, standardized β = 0.297, P value = 0.012) and
BMI (B estimate = 0.009, 95% CI = 0.002~0.017, standard-
ized β = 0.276, P value = 0.017) were positively associated
with the plasma Aβ42/Aβ40 ratio (Fig. 1). There was no

Table 1 Demographics and biomarker profile of enrolled subjects

Enrolled subjects
(N = 295)

Age, years 72.7 ± 8.8

Gender, female % 56%

Educational level, years; median (IQR) 12.0 (6.0–15.0)

MMSE, median (IQR) 27.0 (25.0–28.0)

MCI type, %

Amnestic MCI 83%

Non-amnestic MCI 17%

APOE4 (carrying one or more ε4 allele) 26%

Reported vascular risk factors (no history/under Tx/no Tx)a, %

Hypertension, % 43/52/4%

Type 2 diabetes mellitus, % 83/16/1%

Dyslipidemia, % 67/20/13%

Smoking, (active smoker/quitted smoker), % 8/8%

Less than 1 pack per day 11%

1–2 packs per day 4%

More than 2 packs per day 1%

Serum lipid profile

Total cholesterol, mg/dL 190.4 ± 38.0

LDL cholesterol, mg/dL 112.1 ± 32.9

HDL cholesterol, mg/dL 52.2 ± 14.7

Triglyceride, mg/dL 122.0 ± 68.7

HbA1c 6.09 ± 0.88

Fasting plasma glucose 102.0 ± 24.0

Statin use (% in dyslipidemia) 77 (41%)

Current BMI, kg/m2 23.7 ± 4.3

Imaging biomarkers

Average Schelten’s score for MTA 1.62 ± 0.72

Average Fazekas score for WMH 0.90 ± 0.62

Entorhinal cortical thickness, mm 3.102 ± 0.429

Hippocampal volume, mm3 3283 ± 588.3

Data were represented as mean ± SD or percentage (%)
Abbreviations: APOE apolipoprotein E, BMI body mass index, HDL high-density
lipoprotein, LDL low-density lipoprotein, MMSE Mini-Mental State Examination,
MCI mild cognitive impairment, MTA mesial temporal atrophy, WMH white
matter hyperintensity
aHistory of vascular risk factor profile was derived from a questionnaire and
coded into three groups: no history (no history), positive history and with
medication control (under Tx), and positive history and without medication
control (no Tx)
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significant association between a history of dyslipidemia
and plasma biomarkers.

Vascular risk factors and neuroimaging biomarkers for
dementia
We applied a multiple linear regression model adjusted
with age, gender, educational level, and APOE ε4 carrier
status to test the association between vascular risk fac-
tors and imaging biomarkers, including hippocampal
volume, entorhinal cortical thickness, and the severity of
white matter hyperintensity. After adjustment for the
abovementioned covariates, a history of dyslipidemia
was associated with a larger hippocampal volume (B esti-
mate = 167.05, 95% CI = 58.20~276.89, P value = 0.003)
(Table 2, Model I-1). The association between a history
of dyslipidemia and hippocampal volume remained sig-
nificant after adjustment for lipid profiles and statin
therapy (B estimate = 215.074, 95% CI = 79.738~350.411,
P value = 0.002). To clarify the association between a his-
tory of dyslipidemia and hippocampal volume, partici-
pants were classified into four groups according to their
history of dyslipidemia and lipid-lowering therapy status:
subjects without dyslipidemia (group 1), subjects with
known dyslipidemia and receiving statin therapy (group
2), subjects with known dyslipidemia and not under
medication control (group 3), and subjects unaware of
their dyslipidemia status before enrolment (group 4).
Subjects with known dyslipidemia and not under medi-
cation control (dyslipidemia group 3) had a larger hippo-
campal volume than the other groups (B estimate =
90.55, 95% CI = 9.06~172.04, P value = 0.030) (Table 2,
Model I-2). Regarding entorhinal cortical thickness,

there was no statistically significant association between
individual vascular risk factors and entorhinal cortical
thickness after adjustment for multiple comparisons
(Supplementary Table 2).
Regarding white matter hyperintensity severity rated

by the Fazekas score, hypertension was associated with
more advanced white matter hyperintensity (B esti-
mate = 0.174, 95% CI = 0.040~0.309, P value = 0.011),
while statin therapy for dyslipidemia was associated with
less advanced white matter hyperintensity (B estimate =
− 0.236, 95% CI = − 0.386~ − 0.086, P value = 0.002;
Table 2, Model II). To clarify the association between
statin therapy and white matter hyperintensity, we con-
trolled serum levels of total cholesterol, LDL cholesterol,
HDL cholesterol, and triglyceride as possible covariates
in the linear regression model. A history of statin ther-
apy remained significantly associated with less advanced
white matter hyperintensity (B estimate = − 0.230, 95%
CI = − 0.383~ − 0.078, P value = 0.003), independent of
the lipid profile.
We further tested the difference in white matter

hyperintensity between subjects who had ever received
statin therapy and subjects without statin therapy using
analysis of covariance (ANCOVA), in the subgroup of
subjects with dyslipidemia (n = 182). Subjects who re-
ceived statin therapy had a 22% lower WMH score (95%
CI = 0.063~0.449, P value = 0.01) after adjustment for age,
gender, educational level, lipid profile, and hypertension.

Vascular risk factors and cognitive outcome at 24months
Two hundred eight participants completed a cognitive
assessment at 24 months and were further included in

Fig. 1 The association between LDL cholesterol level and plasma biomarkers. Serum LDL cholesterol level was positively associated with plasma
Aβ42/Aβ40 ratio (a) and plasma tau (b). LDL, low-density lipoprotein; Aβ, amyloid beta
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the cognitive outcome analysis. Subjects who completed
cognitive follow-up had a higher educational level
(11.3 ± 4.5 years vs. 8.6 ± 4.7 years, P < 0.0005), a higher
baseline MMSE score (26.6 ± 2.4 vs. 25.8 ± 3.3), and a
thinner entorhinal cortical thickness (3.087 ± 0.452 mm
vs. 3.234 ± 0.360 mm) (Supplementary Table 5) than
those who were lost to follow-up within 24months (n =
87).
Fifty-three participants (25%) converted to clinical

probable AD dementia within 24months. Among the
non-converters, 25 subjects (12%) had improved cogni-
tive performance, and 130 subjects (62.5%) had stable
cognitive performance at 24 months. Univariate analysis
showed that converters were older (76.7 ± 9.3 vs. 71.7 ±
8.2 years, P value < 0.0005), had a lower baseline MMSE
score (27.0 ± 2.4 vs. 25.4 ± 2.2), more frequently had
amnestic-type MCI (94% vs. 75%, P value = 0.006), and
had more advanced imaging and plasma biomarker pro-
files for neurodegeneration (Supplementary Table 6)
than non-converters. There was also a trend towards less
frequent statin use (29% vs. 45%, P value = 0.076) for
those who had dyslipidemia.
After adjustment for age, gender, educational level,

and baseline MMSE score, there was no statistically sig-
nificant association between individual vascular risk fac-
tor and conversion to clinical probable AD dementia at
24 months (Supplementary Table 3). By contrast, statin

therapy for dyslipidemia was associated with a reduced
risk of conversion to dementia (OR = 0.191, 95% CI =
0.062 ~ 0.586, P value = 0.004; Table 3, Model I). The as-
sociation between statin therapy and reduced conversion
to dementia remained significant after adjustment for a
history of dyslipidemia (Table 3, Model II) or the serum
lipid profile (Table 3, Model III). Under the regression
model adjusted for age, gender, educational level, base-
line MMSE, and statin therapy, there was a trend be-
tween serum LDL cholesterol level and conversion to
dementia (OR = 1.012, 95% CI = 1.000~1.025, P value =
0.060; Table 3, Model IV).

Discussion
In our cohort of MCI subjects with low cerebral SVD
burden, the analysis of baseline biomarkers showed the
following: (1) Higher LDL cholesterol was associated
with plasma signatures of Alzheimer’s pathology. (2)
Hypertension was associated with more advanced white
matter hyperintensity, while statin therapy for dyslipid-
emia was associated with less advanced white matter
hyperintensity. In the longitudinal analysis, statin ther-
apy for dyslipidemia was associated with a reduced con-
version rate to clinical probable AD dementia at 24
months. We confirmed the association between hyper-
tension and white matter hyperintensity reported in sev-
eral previous studies [33–35]. In addition, our findings

Table 2 Factors associated with imaging biomarkers of neurodegeneration related to Alzheimer’s disease

Dependent variable Model Independent variables B estimate (95% CI) Standardized β P valueb

Hippocampal volume I-1 Age − 23.01 (− 28.71~ − 17.30) − 0.414 < 0.001**

Gender 96.58 (− 9.99~203.15) 0.099 0.076

Educational level − 3.93 (− 15.21~7.35) − 0.038 0.494

APOEε4 − 174.78 (− 331.62~ − 17.93) − 0.114 0.029*

Dyslipidemia 167.05 (58.20~275.89) 0.159 0.003**

Hippocampal volume I-2 Age − 22.67 (− 28.45~ − 16.88) − 0.408 < 0.001**

Gender 89.25 (−17.90~196.40) 0.091 0.102

Educational level − 1.97 (− 13.24~9.29) − 0.019 0.731

APOEε4 − 158.91 (− 316.83~ − 1.00) − 0.104 0.049*

Dyslipidemia: Group 3a 90.55 (9.06~172.04) 0.116 0.030*

White matter hyperintensity II Age 0.024 (0.017~0.032) 0.345 < 0.001**

Gender − 0.129 (− 0.268~0.010) − 0.104 0.068

Educational level − 0.004 (− 0.019~0.011) − 0.030 0.601

APOEε4 0.094 (−0.111~0.299) 0.048 0.4368

Hypertension 0.174 (0.040~0.309) 0.139 0.011*

Statin therapy − 0.236 (− 0.386~ − 0.086) − 0.167 0.002**

Age, gender, educational level, and APOEε4 carrier status were adjusted as covariates in all linear regression models. Models were built by stepwise selection
method with P value of entry = 0.1 and stay = 0.2
Abbreviations: APOE apolipoprotein E, LDL low-density lipoprotein
aDyslipidemia status was divided into four groups according to disease and treatment status: subjects without dyslipidemia (group 1), subjects with known
dyslipidemia and received statin therapy (group 2), subjects with known dyslipidemia and not under medication control (group 3), and subjects unaware of their
dyslipidemia status before enrollment (group 4)
b* = P < 0.05, ** = P < 0.01
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suggest that dyslipidemia may contribute to Alzheimer’s
disease-associated neurodegeneration and that statin
therapy may contribute to better cognitive outcomes in
MCI subjects (Fig. 2).
The association between midlife dyslipidemia and

cerebral amyloid deposition was reported in several pre-
vious biomarker studies, especially focusing on non-
demented elderly subjects [36, 37]. For late-life dyslipid-
emia, the association between lipid measurements and
amyloid pathology was less consistent. Reed et al.

reported a positive association between higher LDL
cholesterol, lower HDL cholesterol, and the global PIB
index in 74 subjects, including 33 cognitively normal
and 38 MCI subjects [38]. However, Hughes et al. found
no significant association between cholesterol measure-
ments and cerebral Aβ deposition in 175 non-demented
elderly subjects [39]. One important difference between
these two studies is that Reed’s cohort was enriched for
cerebrovascular disease and vascular risk factors. A key
strength of our MCI cohort is that we enrolled subjects
who had a low cerebral SVD burden on brain MRI. We
still found consistent associations between elevated LDL
cholesterol levels and plasma biomarkers for Alzheimer’s
pathology, including the plasma Aβ42/Aβ40 ratio and
plasma tau level.
Another important finding in our cohort is that statin

therapy for dyslipidemia was associated not only with
less advanced white matter changes at the time of MCI
diagnosis but also with a reduced rate of conversion to
dementia 24 months later. The above findings remained
significant even if we controlled for lipid measurements
as possible confounding factors. Several observational
studies have suggested a potential beneficial effect of sta-
tin on cognitive outcome in non-demented elderly sub-
jects [15, 40, 41]. However, randomized controlled trials
failed to demonstrate any cognitive benefit of statin for
either cognitively normal elderly individuals [42–44] or
subjects with mild to moderate clinical probable AD
[45–47]. Although randomized controlled trials are the
gold standard for establishing causal relationships, they
are often limited by small sample sizes and short follow-
up periods. Additionally, subjects with abnormal lipid
profiles were often excluded from previous randomized
controlled trials. In the real world, dyslipidemia is a
common disease in elderly individuals either with or
without cognitive impairment. Subjects with concurrent
dyslipidemia may be the target population that may es-
pecially benefit from statin therapy. The Simvastatin in
Amnestic Mild Cognitive Impairment (MCI) Patients
(SIMaMCI: clinicaltrials.gov NCT00842920) trial is an
ongoing randomized placebo-controlled trial that tests
the effect of simvastatin on the change in CDR at 24
months in subjects with amnestic-type MCI [48]. This
trial includes MCI subjects with abnormal cholesterol
measurements and may help clarify the cognitive effect
of statin on MCI subjects with concurrent dyslipidemia.
We also found an unexpected association between a

history of dyslipidemia and a larger hippocampal vol-
ume. Further analysis showed that it was those subjects
who were aware of but did not receive medication for
their dyslipidemia that contribute to the positive associ-
ation with the hippocampal volume. One possible ex-
planation is that those subjects who did not receive
medication for dyslipidemia may take other means, such

Table 3 Factors associated with conversion to dementia within
24 months

Model Variables Adjusted odds ratio (95% CI) P valuea

I Age 1.082 (1.026~1.141) 0.003**

Gender 0.859 (0.342~2.157) 0.746

Educational level 1.001 (0.901~1.112) 0.987

MMSE 0.768 (0.631~0.934) 0.008**

Statin therapy 0.191 (0.062~0.586) 0.004**

II Age 1.062 (1.016~1.109) 0.008**

Gender 0.610 (0.277~1.345) 0.221

Educational level 1.094 (0.991~1.207) 0.074

MMSE 0.760 (0.643~0.900) 0.001**

Dyslipidemia 1.617 (0.718~3.644) 0.246

Statin therapy 0.279 (0.099~0.788) 0.016*

III Age 1.072 (1.019~1.128) 0.007**

Gender 0.851 (0.322~2.247) 0.744

Educational level 1.034 (0.928~1.153) 0.543

MMSE 0.760 (0.625~0.924) 0.006**

Total cholesterol 0.942 (0.865~1.025) 0.167

LDL cholesterol 1.074 (0.985~1.171) 0.104

HDL cholesterol 1.060 (0.965~1.164) 0225

Triglyceride 1.010 (0.993~1.028) 0.252

Statin therapy 0.274 (0.096~0.274) 0.016*

IV Age 1.064 (1.015~1.116) 0.010*

Gender 0.720 (0.303~1.712) 0.457

Educational level 1.070 (0.966~1.185) 0.194

MMSE 0.743 (0.618~0.894) 0.002**

Statin therapy 0.320 (0.123~ −0.836) 0.020*

LDL cholesterol 1.012 (1.000~1.025) 0.060

Age, gender, educational level, and baseline MMSE were adjusted as
covariates in all logistic regression models. Models were built by stepwise
selection method with P value of entry = 0.1 and stay = 0.2. The tested
independent variables in Model I were vascular risk factors (hypertension,
diabetes mellitus, dyslipidemia, and smoking) and statin use. Models II and III
were adjusted for history of dyslipidemia and lipid profile, separately, to test
the association between statin use and conversion to dementia. Model IV was
adjusted for statin use, to test the association between lipid profile (total
cholesterol, LDL cholesterol, HDL cholesterol, and triglyceride) and conversion
to AD at 24 months
Abbreviations: APOE apolipoprotein E, HDL high-density lipoprotein, LDL low-
density lipoprotein, MMSE Mini-Mental State Examination
a* = P < 0.05, ** = P < 0.01
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as lifestyle modification, to control their dyslipidemia.
These lifestyle modifications may act as confounding
factors that distort the association between dyslipidemia
and neuroimaging measurements. The potential benefi-
cial effects of physical activity [49, 50] and nutritional in-
terventions [51, 52] on hippocampal volume in elder
adults or MCI subjects were reported in several random-
ized controlled trials.
There were some limitations in this study. First, we

did not have information for underlying AD pathology
for the entire cohort. To restrict our study population to
clinical MCI presumed to be due to Alzheimer’s path-
ology, we only included MCI subjects with low cerebral
SVD burden on brain MRI. The concordance rate be-
tween clinical diagnosis of AD and Alzheimer’s path-
ology was 70–90% according to previous autopsy [7, 53]
and amyloid PET [54] studies. Second, whether statin
therapy exerts its beneficial effect on cognition through
its lipid-lowering effect or other pleotropic effects can-
not be fully answered by this study. We tried to address
this issue by adjusting for lipid measurements in regres-
sion models and still found a significant association be-
tween statin therapy and better cognitive outcome.
However, the long-term control status of dyslipidemia
may not be reflected by this single-time-point-lipid meas-
urement. In addition, we cannot exclude the possibility
that, instead of being a causative factor, statin therapy may
be a surrogate marker that reflects concurrent lifestyle
modification or self-health awareness in the participants.
Another limitation of this study is the potential recall er-
rors associated with the vascular risk factor questionnaire.
However, because the questionnaire was recorded upon
the diagnosis of MCI and before conversion to dementia,

it is unlikely that the recall error will bias the results to-
wards a specific direction.

Conclusions
In conclusion, our findings suggest that dyslipidemia
and hypertension contribute to different neurodegenera-
tive processes in MCI. Dyslipidemia, especially a higher
LDL cholesterol level, may participate in AD specific
neurodegeneration while hypertension may contribute to
cerebrovascular pathology. Furthermore, statin therapy
may play a role in slowing the conversion from MCI to
dementia. Further studies are needed to elucidate the
mechanism underlying the interaction between vascular
pathology and Alzheimer’s pathology. The potential
beneficial effect of statin therapy for dyslipidemia at or
before the stage of MCI should be verified by random-
ized controlled trials. Understanding the role of vascular
pathology in neurodegeneration may provide an alterna-
tive therapeutic approach for AD.
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