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AD vs AD+40 (P < .001), AD vs AD+EX (P = .003), and
AD vs AD+40+EX (P < .001). In the AD group, the im-
plementation of exercise and 40-Hz light flickering was
effective in the repetitive learning, especially the combin-
ation of 40-Hz light flickering and exercise. Spatial
memory (P < .001) and long-term memory (P < .001)
were significantly reduced in the AD group compared
with the CON group. In contrast, spatial memory and
long-term memory were enhanced by exposure to
AD+40-Hz (P = .008, P = .030), AD+EX (P = .001,
P = .019), and AD+40+EX (P < .001 respectively).
Groups of treatment comparison revealed significant dif-
ferences for spatial learning and long-term memory be-
tween AD+40+EX and AD+40 (p < .001, p = .001,
respectively) and AD+EX (P = .007, P = .002, respect-
ively) groups. AD+40 and AD+EX groups did not show
a significant intergroup difference. Therefore, it is worth
noting that exercise was most effective in improving
cognitive functioning under the 40-Hz light flickering
condition in AD and that the results were better than
the normal aging group used as CON (Fig. 1, Table 1).

Effects of exercise under exposure to 40-Hz light
flickering on A� in the hippocampus
The number of Aβ-positive cells in the CA1, CA2–3,
and DG of the hippocampus was significantly decreased

in the AD group compared with the treatment groups;
Aβ-positive cells were reduced in the AD+40 (CA1:
P < .001, CA2–3: P < .001, DG: P < .001), AD+EX (CA1:
P < .001, CA2–3: P < .001, DG: P < .001), and
AD+40+EX (CA1: P < .001, CA2–3: P < .001, DG:
P < .001) groups. When exercise alone was compared
with exercise performed under the 40-Hz light flickering
condition, the AD+40+EX group showed an intergroup
difference when compared to AD+40 (P < .001) and
AD+EX (P < .001) across all areas of the hippocampus
(CA1, CA2–3, and DG); however, groups exposed to 40-
Hz light flickering or exercise alone (AD+40 and
AD+EX groups, respectively) did not show any signifi-
cant intergroup difference. Therefore, each method was
effective in removing Aβ, although performing exercise
under the 40-Hz light flickering condition was the most
efficacious. It is interesting to note that exercise during
the 40-Hz light flickering condition reduced Aβ to CON
levels in the CA2–3 and DG of the hippocampus (Fig. 2,
Table 2).

Effects of exercise under exposure to the 40-Hz light
flickering on Akt/tau in the hippocampus
Western blot was used to analyze the changes in expres-
sion of Akt/tau proteins in the hippocampus. For an in-
tergroup comparison, the ratio of the CON group was

Fig. 1 Effects of exercise under exposure to the 40-Hz light flicker on spatial learning and memory and long-term memory. The Morris water
maze task for spatial learning (a) and memory (b) and step through task for long-term memory (c). CON: wild-type, AD: 3xTg-AD, AD+40: 3xTg-
AD and 40-Hz light flickering, AD+EX: 3xTg-AD and exercise, and AD+40+EX: 3xTg-AD and exercise in the 40-Hz light flickering group. Data are
expressed as the mean ± standard error of the mean (SEM). *P < .05 compared to the CON group. #P < .05 compared to the AD group. +P < .05
compared to the AD+40+EX. $P< .05 for a difference between the group because of the interaction effect
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In the present study, mitochondrial function and neu-
roplasticity were improved by Aβ and tau overexpression
in an AD animal model through exercise as in the previ-
ous study. However, the therapeutic benefit of this in pa-
tients with AD remains controversial. Our study showed
that exercise along with a non-invasive approach such as
40-Hz light flickering led to a significant improvement
in AD patients, which was an important conclusion. Al-
though much research on 40-Hz light flickering is still
needed, Aβ and tau protein levels were suppressed, and
the improvement in Aβ and tau expression caused by
40-Hz light flickering may have induced various positive
cellular effects. Thus, under these circumstances, exer-
cise may have a positive effect on this AD animal model
as a complimentary therapy to 40-Hz light flickering.

Conclusion
Many previous studies have suggested that Aβ and tau
are important pathological factors in AD pathogenesis.
Abnormal expression of Aβ and tau in the hippocampus
may induce a variety of changes such as decreased mito-
chondrial function, apoptosis, decreased neurogenesis,
and reduced synaptic-related proteins, which may cause
a decline in cognitive functioning. However, if gamma
oscillation can be stabilized through the visual stimula-
tion of 40-Hz light flickering, exercise may improve cog-
nitive functioning, as these two non-invasive methods
produced a synergistic effect, which improved mitochon-
drial function and neuroplasticity by reducing Aβ and
tau levels. Further research is needed to determine the
effectiveness of these non-invasive methods in various
models and their clinical applications.
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