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Participant and study partner prediction
and identification of cognitive impairment
in preclinical Alzheimer’s disease: study
partner vs. participant accuracy
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Abstract

Background: Preclinical Alzheimer’s disease (AD) clinical trials require participants to enroll with a study partner, a
person who can attend visits and report changes in the participant’s cognitive ability. Whether study partners,
compared to participants themselves, provide added information about participant cognition in preclinical AD trials
is an open question. We tested the hypothesis that study partners provide meaningful information related to
participant cognition cross-sectionally and longitudinally, and assessed whether amyloid status modified observed
effects.

Methods: We assessed participant and study partner Everyday Cognition (ECog) scores and participant Alzheimer’s
Disease Assessment Scale 13-item cognitive subscale (ADAS13) data from 335 cognitively normal participant-partner
dyads in the AD Neuroimaging Initiative. We used random forest and linear mixed effects (LME) models to predict
ADAS13 scores as a function of participant and/or study partner ECog scores over time. LME models were adjusted
for potential confounding factors, including APOE4 status, amyloid status, baseline age, years of education, and sex.
Random forest models were split into the above factors, as well as race/ethnicity and other available
neuropsychological battery test scores.

Results: In random forest models predicting ADAS13 12 months from baseline, we observed no difference in the
estimated mean variable importance (eMVI) associated with baseline study partner ECog compared to the baseline
participant ECog (eMVI = 0.15, 95%CB 0.13, 0.16 for partner; eMVI = 0.15, 95%CB 0.14, 0.16 for participant). In models
predicting ADAS13 48 months after baseline, the eMVI associated with baseline study partner ECog was slightly
lower than that associated with baseline participant ECog (eMVI = 0.21, 95%CB 0.20, 0.22 for partner; eMVI = 0.24,
95%CB 0.22, 0.25 for participant). In cross-sectional models, study partner eMVI was twice as large as participant
eMVI at 12 months (eMVI = 0.20, 95%CB 0.19, 0.21 for partner; eMVI = 0.09, 95%CB 0.09, 0.10 for participant) and
three times as large at 48 months (eMVI = 0.38, 95%CB 0.36, 0.39 for partner; eMVI = 0.13, 95%CB 0.12, 0.14 for
participant). We did not observe qualitative differences by amyloid status.

Conclusions: While baseline participant reports reasonably predict subsequent cognitive change, informants
perform better at cross-sectionally recognizing cognitive status as observation time grows. The study partner
requirement may be essential to ensure trial data integrity, especially in longer trials.

Keywords: Alzheimer’s disease, Study partner, preclinical, ADNI

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: marymr@uci.edu; jgrill@uci.edu; dgillen@uci.edu
†Joshua D. Grill and Daniel L. Gillen are co-senior authors.
1Department of Statistics, University of California, Irvine, Irvine, CA 92697, USA
2Institute for Memory Impairments and Neurological Disorders, University of
California, Irvine 92697, CA, USA
Full list of author information is available at the end of the article

Ryan et al. Alzheimer's Research & Therapy           (2019) 11:85 
https://doi.org/10.1186/s13195-019-0539-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s13195-019-0539-3&domain=pdf
http://orcid.org/0000-0002-4215-7589
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:marymr@uci.edu
mailto:jgrill@uci.edu
mailto:dgillen@uci.edu


Introduction
Alzheimer’s disease (AD) is a progressive neurodegener-
ative disease that results in dementia—cognitive and
functional impairment that interrupts independence in
daily life. US Food and Drug Administration (FDA) ap-
proval for new AD treatments historically requires dem-
onstration of both functional and cognitive benefit in
AD dementia clinical trials. Demonstration of functional
benefit, along with logistical needs related to study com-
pliance and ethical needs related to informed consent,
requires that AD dementia trial participants enroll with
a study partner [1, 2].
In an effort to intervene earlier in the disease process,

before neurodegeneration reaches severe stages, re-
searchers have begun performing clinical trials that en-
roll patients whose disease does not meet the criteria for
dementia. This includes trials of patients with mild cog-
nitive impairment (MCI), a construct defined by object-
ive cognitive impairment without functional loss or
impaired activities of daily living. MCI patients with bio-
marker evidence of AD, such as elevated brain levels of
amyloid-β42, which can be observed through the use of
neuroimaging and cerebrospinal fluid (CSF) protein ana-
lysis [3], meet the criteria for MCI due to AD or pro-
dromal AD [4, 5]. To intervene even earlier in disease,
preclinical AD trials enroll patients with no cognitive
impairment but biomarker evidence of AD [6].
Participants in preclinical and prodromal AD trials are

expected to be able to provide informed consent and to
comply with study requirements. Yet, the need for infor-
mants who report participant cognitive and functional
performance in these trials is less understood. Study
partners may perform better at predicting future AD de-
mentia than do patients with MCI [7, 8], while other
studies show that patients with MCI are fairly accurate
at assessing their current cognitive state [9]. Preliminary
studies indicate that self-reports from cognitively normal
participants may better predict future outcomes than do
study partners [10, 11]. Whether these relationships are
altered in the presence of AD biomarkers remains an
area in need of study.
Initial preclinical AD trials require participants to en-

roll with study partners [12]. An open question remains,
though, whether participants themselves or their part-
ners provide more meaningful information on trial out-
comes. In this study, we sought to determine if study
partners provide additional information, in relation to
preclinical AD study participants, in predicting future
cognitive decline or assessing current cognitive perform-
ance, and assessed whether amyloid status modified ob-
served effects. We hypothesized that study partners
would provide more meaningful information than partic-
ipants over time, but that this effect would be observed
only in participants with elevated brain amyloid.

Methods
Data collection
We used data from the AD Neuroimaging Initiative
(ADNI). Data used in the preparation of this article were
obtained from the ADNI database (adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private
partnership, led by principal investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment
can be combined to measure the progression of MCI
and early AD. For up-to-date information, see www.
adni-info.org.
Criteria for this study were that participants have a

diagnosis of “cognitively normal” at the first visit with an
available Everyday Cognition (ECog) score and have at
least one observation of amyloid status, as observed via
CSF measurement, PET AV45 standard uptake value ra-
tio (SUVR), or PET Pittsburgh compound B (PiB). We
used the first visit in which there was an available ECog
score as the baseline for this study. After implementing
this inclusion/exclusion criteria, there were N = 335 vi-
able dyads for the current study: N = 227 had data avail-
able at a visit 12 months after baseline, N = 250 at 24
months, and N = 107 at 48 months.
On May 9, 2014, an ADNI2 protocol amendment re-

stricted annual ADNI visits to those participants who
progressed to MCI or dementia; cognitively normal par-
ticipants completed visits every 2 years [13]. The change
occurred after all ADNI2 participants were assessed for
their 12-month visit, so only month 36 visits were af-
fected. While the protocol change did not impact the en-
tire available data pool, it was significant enough that
observed results at 36 months would potentially be
biased. Therefore, we excluded any observations col-
lected at 36 months from the current analysis.

Amyloid positivity
We assigned amyloid status based on CSF amyloid beta
(Aβ42), AV45 SUVR, or PiB measurements. PiB mea-
surements were converted to the AV45 SUVR scale via
the regression equation y = 0.15 + 0.67x [14]. Those par-
ticipants with either CSF Aβ42 levels below 192 pg/mL
or AV45 SUVR (converted or otherwise) above 1.1 were
classified as “elevated amyloid”: all others were desig-
nated “not elevated amyloid.”

Alzheimer’s Disease Assessment Scale 13-item cognitive
subscale (ADAS13)
We used the Alzheimer Disease Assessment Scale 13-
item cognitive subscale (ADAS13) as an objective cogni-
tive performance response variable in this study. Com-
pared to the 11-item version used in dementia trials, the
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ADAS13 includes a number of cancelation and a delayed
free recall task that increases sensitivity in early-stage
disease [15, 16]. The ADAS13 has a range of 85 possible
points, with higher scores reflecting poorer cognitive
performance.

Everyday Cognition
We used the Everyday Cognition (ECog) scale to exam-
ine the subjective cognitive performance in this study.
The ECog includes both participant and informant ver-
sions. The ECog is a 39-item questionnaire designed to
measure functional performance that is linked to specific
cognitive abilities [17]. It compares the participant’s
current everyday functioning with their perceived func-
tioning (or their study partner’s perception of their func-
tioning) from 10 years prior. Each item covers a task in 1
of 6 cognitively relevant domains (memory, language,
visuospatial abilities, planning, organization, and divided
attention) and is rated on a 4-point scale, with 1 being
“better or no change compared with 10 years earlier”
and 4 being “consistently much worse.” Overall ECog
scores are calculated by averaging the ratings from the
39 items.

Statistical methods
Study population demographics were summarized via
sample means and standard deviations for continuous
variables, and counts and percentages for discrete
variables.
We sought to quantify the ability of study participants

and partners to cross-sectionally predict cognitive per-
formance and to prospectively predict future changes in
cognition, as measured by the ADAS13. We used ran-
dom forest models to assess the predictive ability of par-
ticipants and study partners over the course of
observation, modeling ADAS13 scores at 12, 24, and 48
months as a function of baseline participant and/or
study partner ECog scores [18]. Random forest models
represent an ensemble (or average) of Classification and
Regression Trees constructed via recursive partitioning
where binary separations of the study sample are created
by choosing the optimal predictor and cut-point com-
bination to yield the largest discrimination in mean re-
sponse values between the resulting subpopulations.
Random forest models were trained using cross-
validation with squared error loss as the prediction pen-
alty, as implemented in the R statistical software lan-
guage using the GRF package [19, 20]. To account for
potential imbalance in the number of repeated measures
across subjects, we fit models using a multiple outputa-
tion procedure in which a balanced number of observa-
tions were sampled from each subject [21]. To maximize
efficiency, we took the number of randomly sampled ob-
servations per subject to be the minimum number of

repeated measures on any one participant in the study
sample.
We calculated estimated mean variable importance

(eMVI) to assess the relative informative and predictive
abilities of participant and study partner ECog scores in
the random forest models. Variable importance is mea-
sured here as the weighted sum of the frequencies at
which a variable is used to split the dataset at various
levels—when a variable is used to split the dataset at the
top of the decision tree, it is given more weight than
when it is used to split the dataset farther down the tree.
The larger the variable importance measure, the more
important the variable is within the model. To account
for stochasticity in the formulation of the random forest
models, we created 100 forests by varying the random
seed generator in R and calculated the eMVI by taking
the sample average of the variable importance measures
from each forest. We calculated 95% error bounds by
taking the 2.5 and 97.5th percentiles of the simulated
variable importance measures.
To provide additional interpretability of the impact of

the participant and partner subjective assessment on rec-
ognizing participant cognitive decline, we also built lin-
ear mixed effects (LME) models on a reduced set of
covariates, chosen a priori. As with the random forest
models, we modeled ADAS13 scores at 12, 24, and 48
months as a function of baseline participant and/or
study partner ECog scores. Specifically, we considered
models of the form:

ADAS13i; j ¼ X
*

i;0 β
* þγ i;

where ADAS13i, j represents the ADAS13 participant

score for participant i at time point j; X
*

i;0 denotes the
vector of baseline covariates for subject i, including par-

ticipant and/or study partner ECog score; β
*

represents a
vector of fixed effects parameters associated with the
baseline covariates; and γi denotes a subject-specific ran-
dom intercept. In addition, all models were adjusted for
potential confounding factors, including APOE4 status
(carrier vs. non-carrier), amyloid status (elevated vs. not
elevated), baseline age, years of education, and sex. Re-
sidual diagnostics were conducted to assess the assump-
tion of the exchangeable covariance structure implied by
the random intercept model.
To assess the informative ability of participants and

study partners at a given time point, we created cross-
sectional random forest and LME models using ECog
scores at 12, 24, and 48 months to predict ADAS13
scores at the same time points. We used a similar ap-
proach as above, except baseline ECog scores were re-
placed with concurrent scores for the visit at which the
response was obtained.
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Results
Table 1 describes the demographics of the participants
included in this analysis, stratified by amyloid status.
Compared to the not elevated group, the elevated amyl-
oid group included more female participants (77% vs.
47%) and more participants with at least one ε4 allele of
the APOE gene (47% vs. 23%). Both groups had similar
mean ages, years of education, and participant and study
partner baseline ECog scores, though the elevated amyl-
oid group had higher baseline ADAS13 scores (9.63 vs.
8.65). In both the elevated and the not elevated amyloid
groups, participants scored their cognitive function on
the ECog worse than did their study partners at baseline.
Demographic data for ADNI study partners were not
available.
In random forest models predicting ADAS13 12

months from baseline, the eMVI associated with baseline
study partner ECog was not different from that associ-
ated with baseline participant ECog (eMVI = 0.15,
95%CB 0.13, 0.16 for partner; eMVI = 0.15, 95%CB 0.14,
0.16 for participant; Fig. 1a). Similarly, when predicting
ADAS13 further from baseline to 48 months, the eMVI
associated with baseline study partner ECog was
slightly lower than that associated with baseline par-
ticipant ECog (eMVI = 0.21, 95%CB 0.20, 0.22 for
partner; eMVI = 0.24, 95%CB 0.22, 0.25 for partici-
pant; Fig. 1a). These results were mirrored in the lon-
gitudinal LME models predicting the same time
points (see Tables 2 and 3).

In cross-sectional random forest models assessing 12-
month ADAS13, the eMVI associated with study partner
ECog at 12 months was twice as large as the eMVI asso-
ciated with participant ECog at 12 months (eMVI = 0.20,
95%CB 0.19, 0.21 for partner; eMVI = 0.09 95%CB 0.09,
0.10 for participant; Fig. 1b). By 48months, the eMVI as-
sociated with study partner ECog for assessing ADAS13
was three times as large as that associated with partici-
pant ECog—a statistically significant difference (eMVI =
0.38, 95%CB 0.36, 0.39 for partner; eMVI = 0.13, 95%CB
0.12, 0.14 for participant; Fig. 1b).
A similar gap was observed at 48 months in the cross-

sectional LME model: a 1 standard deviation increase in
study partner ECog was associated with a 1.37-point in-
crease in ADAS13 score (95% CI 0.78, 1.96; Table 3)
while a 1 standard deviation increase in participant ECog
was associated with a 0.66-point increase (95% CI − 0.17,
1.48; Table 3). Removing cases of conversion to MCI
from the analyses had minimal impact at 12 and
24 months but essentially removed the observed differ-
ence in eMVI between partners and participants at
48 months (data not shown).
Across all LME models—including those predicting fu-

ture ADAS13 scores from baseline ECog scores and
cross-sectional models—the effect of amyloid status was
not statistically significant. Likewise, there were there no
significant interacting effects between amyloid status
and participant or study partner ECog scores in any
LME model.

Table 1 Characteristics of participants and study partners analyzed

Amyloid beta elevated (n = 100) Amyloid beta not elevated (n = 235) Total (n = 335)

Sex

Male 33 (33%) 124 (52.77%) 157 (46.87%)

Female 77 (77%) 111 (47.23%) 178 (53.13%)

Race/ethnicity

Caucasian 89 (89%) 212 (90.21%) 301 (89.85%)

African-American 7 (7%) 15 (6.38%) 22 (6.57%)

Asian 2 (2%) 4 (1.7%) 6 (1.79%)

Age 74.34 (5.87) 72.8 (5.77) 73.26 (5.83)

Years of education 15.93 (2.56) 16.72 (2.55) 16.49 (2.58)

APOE4 alleles

0 53 (53%) 182 (77.45%) 235 (70.15%)

1 43 (43%) 49 (20.85%) 92 (27.46%)

2 4 (4%) 4 (1.70%) 8 (2.39%)

MMSE 29.04 (1.08) 29.08 (1.28) 29.07 (1.22)

ADAS13 9.63 (4.43) 8.65 (4.42) 8.94 (4.44)

ECog

Participant 1.42 (0.32) 1.38 (0.33) 1.39 (0.33)

Study partner 1.21 (0.29) 1.20 (0.30) 1.20 (0.29)
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Discussion
We investigated the extent to which study partners
provide relevant additional information, in relation to
study participants, in a sample that parallels preclin-
ical AD trials. While eMVI values cannot be com-
pared across models, because the outcomes measured
in each model are different and hence yield inherently
different variation, we can compare the relative per-
formance of participants and study partners within
each setting. When we assessed the participants’ and
partners’ abilities at baseline to predict future cogni-
tive performance through random forest models, we
found no difference between the groups. When exam-
ining the relationships between participant and part-
ner reporting cross-sectionally, however, we found
that the study partners provide increasingly meaning-
ful information over time and that this information
eventually (by 48 months) becomes more valuable
than the participant’s self-report. Similar results were
seen in the associative LME models: higher study
partner ECog scores were associated with higher
ADAS13 scores, compared to ECog scores provided
by participants, in both longitudinal and cross-
sectional models. In the prospective prediction case,

the width of this gap stayed approximately static over
time, whereas in cross-sectional models, this gap wid-
ened over time.
These results are similar to the previous observations

and indicate that the information provided by the study
partners becomes increasingly important over the course
of a preclinical AD trial. For example, Amariglio and
colleagues observed higher correlations between partici-
pant Cognitive Function Instrument (CFI) scores and a
composite cognitive outcome at baseline, compared to
study partner CFI scores. By 48 months, however, corre-
lations were higher for partners compared to partici-
pants, though summing CFI for the dyad demonstrated
the highest correlations [11]. Two, not mutually exclu-
sive, potential explanations exist for why study partners
may increasingly outperform participants in recognizing
cognitive impairment in preclinical AD trials. First, the
quality of the information provided by the study partner
may increase with time, as they become more comfort-
able with the instrument, study procedures, and the need
to observe participant behaviors between visits. Second,
some participants may experience cognitive decline over
the course of the study, rendering them less able to reli-
ably report their own cognitive and functional

Fig. 1 Variable importance of baseline (a) and 12-, 24-, and 48-month (b) participant and study partner ECog scores predicting 12-, 24-, and 48-
month ADAS13 scores in the additive model using the same covariates as in the LME models

Table 2 LME coefficients for longitudinal and cross-sectional models at 12 months from baseline
Longitudinal model Cross-sectional model

Coefficient estimate 95% confidence interval Coefficient estimate 95% confidence interval

Participant ECog 0.16 (− 0.50, 0.79) 0.06 (− 0.44, 0.56)

Study partner ECog 0.72 (0.07, 1.36) 0.67 (0.11, 1.23)

Time − 1.22 (− 184.30, 181.86) − 14.02 (− 200.75, 172.71)

Squared time 3.17 (− 89.14, 95.48) 9.72 (− 84.41, 103.86)

Age 0.18 (0.08, 0.27) 0.17 (0.07, 0.27)

Years of education − 0.27 (− 0.49, − 0.06) − 0.27 (− 0.50, − 0.05)

Male 1.73 (0.60, 2.87) 1.78 (0.63, 2.94)

> 0 APOE4 0.61 (− 0.62, 1.85) 0.56 (− 0.71, 1.83)

Amyloid status − 0.10 (− 1.41, 1.20) − 0.04 (− 1.37, 1.30)
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performance. For example, a portion of MCI participants
may demonstrate anosognosia, and these individuals
may be at the highest risk for AD and progression to de-
mentia [22, 23].
Notably, a minority (N = 47) of the participants in this

study progressed to a clinical diagnosis of MCI. When re-
moving those who converted to MCI at the 48-month
time point, the observed cross-sectional effect disap-
peared. Partners’ eMVI were no different from partici-
pants’. Thus, conversion to MCI is largely driving the
observed overall effects at 48 months. Though this is im-
portant, it does not change the overall interpretation of
our results. Indeed, preclinical AD trials aim to enrich for
participants most likely to demonstrate cognitive decline
during the course of study, ultimately including the onset
of MCI or dementia in some participants. This is very
much in line with the primary aim of these studies: to en-
able the efficient assessment of whether an intervention
can delay or prevent the onset of cognitive impairment.
In contrast to our hypothesis, we did not observe dif-

ferences in the associations between subjective reports
and objective performance based on amyloid status. The
length of the asymptomatic period of AD has been esti-
mated to be as long as 15 years [24]. Recent demonstra-
tions of the differences in cognitive performance
between those with elevated and not elevated brain
amyloid were most striking more than 48 months after
baseline, beyond the length of longitudinal data used in
the current study [25]. We chose this length of longitu-
dinal assessment to recapitulate the lengths of preclinical
AD trials, and also because of the limited data available
based on our study design (i.e., the use of the ECog as a
subjective assessment of participant cognitive perform-
ance). The risk for cognitive decline may also be highest
in individuals who not only demonstrate elevated amyl-
oid, but who are also carriers for the ε4 allele of the
APOE gene, and we lacked sufficient sample size to per-
mit such further stratification in our analyses [26].
Amyloid status was positively associated with ADAS13

48months from baseline but was not statistically

significant due to high variation in the observed esti-
mate. Predictors of ADAS13 scores (cross-sectionally
and longitudinally) included age (positive association),
education (negative association), and male sex (positive
association). The effects of age and education are not
surprising. The effect of sex, however, was unexpected,
given that women are at increased risk for AD [27]. Men
are, however, at increased risk for MCI and sex effects
may yield differences not only in temporal progression
of disease, but also specific cognitive domains that are
affected early vs. late in disease [28, 29].

Limitations
As is the case with any observational study, there is a
possibility that the relative informative ability of the
study partners is affected by factors that were not ob-
served. We attempted to mitigate this to the best of our
ability by controlling for known confounding factors but
were limited to the data related to the participants them-
selves. No data were available for the study partners.
Characteristics such as whether the study partner lives
with the participant or the number of hours spent per
week in contact with the participant may affect the qual-
ity of data they provide [30], and an accompanying paper
by our group examines this concept in preclinical AD
trials [31]. In addition, due to protocol amendments in
ADNI2, reliable data were not available at 36 months.
We have no reason to suspect, however, that estimates
would stray from the observed trajectories created by
the 12-, 24-, and 48-month models. Moreover, there
were few viable dyads remaining for 48-month analyses,
limiting the estimate precision at this time point. More
information at these time points may be necessary to
credibly confirm the inferences made in this study.

Conclusions
While cognitively normal participants may be capable of
providing consent and accurately informing on their own
cognitive abilities at study start, study partner information
is likely to become increasingly important over the course

Table 3 LME coefficients for longitudinal and cross-sectional models at 48 months from baseline
Longitudinal model Cross-sectional model

Coefficient estimate 95% confidence interval Coefficient estimate 95% confidence interval

Participant ECog 0.24 (− 1.06, 1.54) 0.66 (− 0.17, 1.48)

Study partner ECog 1.18 (− 0.39, 2.75) 1.37 (0.78, 1.96)

Time − 546.09 (− 1469.04, 376.87) − 526.34 (− 1397.70, 345.01)

Squared time 70.25 (− 45.59, 186.1) 68.18 (− 41.18, 177.53)

Age 0.25 (0.05, 0.45) 0.21 (0.02, 0.40)

Years of education − 0.36 (− 0.80, 0.08) − 0.38 (− 0.80, 0.03)

Male 1.10 (− 1.12, 3.31) 1.01 (− 1.10, 3.11)

> 0 APOE4 1.65 (− 0.63, 3.94) 1.29 (− 0.86, 3.43)

Amyloid status 1.58 (− 0.76, 3.91) 0.83 (− 1.43, 3.08)
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of a preclinical AD trial. Given that clinical trials tend to
focus on current participant cognitive status measured pro-
spectively in time, the finding that study partners provide
increasingly more predictive data for assessing participant
cognition as time moves on has potentially far-reaching im-
plications in the setting of controlled intervention trials.
Specifically, this finding suggests that the study partner role
may be essential to minimizing bias, increasing precision in
endpoint assessment, and ultimately ensuring trial data in-
tegrity. Thus, these results endorse the continued require-
ment of study partners in preclinical AD trials.
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