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Abstract

Background: A relationship quantitative trait locus exists when the correlation between multiple traits varies by
genotype for that locus. Relationship quantitative trait loci (rQTL) are often involved in gene-by-gene (G×G)
interactions or gene-by-environmental interactions, making them a powerful tool for detecting G×G.

Methods: We performed genome-wide association studies to identify rQTL between tau and Aβ42 and ptau and
Aβ42 with over 3000 individuals using age, gender, series, APOE ε2, APOE ε4, and two principal components for
population structure as covariates. Each significant rQTL was separately screened for interactions with other loci for
each trait in the rQTL model. Parametric bootstrapping was used to assess significance.

Results: We found four significant tau/Aβ42 rQTL from three unique locations and six ptau/Aβ42 rQTL from five
unique locations. G×G screens with these rQTL produced four significant G×G interactions (one Aβ42, two ptau, and
one tau) with four rQTL where each second locus was from a unique location. On follow-up, rs1036819 and
rs74025622 were associated with Alzheimer’s disease (AD) case/control status; rs15205 and rs79099429 were
associated with rate of decline.

Conclusions: The two most significant rQTL (rs8027714 and rs1036819) for ptau/Aβ42 are on different
chromosomes and both are strong hits for pelvic organ prolapse. While diseases of the nervous system can cause
pelvic organ prolapse, it is unlikely related to the ptau/Aβ42 relationship but may suggest that these two loci share
a pathway. In addition to a ptau/Aβ42 rQTL and association with AD case/control status, rs1036819 is a strong rQTL
for case/control status/Aβ42 and for tau/Aβ42. It resides in the ZFAT gene, which is related to autoimmune thyroid
disease. For tau, rs9817620 interacts with the tau/Aβ42 rQTL rs74025622. It is in the CHL1 gene, which is a neural
cell adhesion molecule and may be involved in signal transduction pathways. CHL1 is related to BACE1, which is a
β-secretase enzyme that initiates production of the β-amyloid peptide involved in AD and is a primary drug target.
Overall, there are numerous loci that affect the relationship between these important AD endophenotypes and
some are due to interactions with other loci. Some affect the risk of AD and/or rate of progression.
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Background
Aβ42, tau, and ptau are important biomarkers for
Alzheimer’s disease (AD). Cerebrospinal fluid (CSF)
levels of amyloid-beta (Aβ) and tau change before clin-
ical symptoms of AD are observed. Aβ42 is decreased in
CSF as the disease progresses, and tau levels increase.
This combination of changes appears to be specific to
AD [1]. CSF levels of Aβ42 and tau are important indi-
cators of AD pathology. Here, we seek to identify genetic
loci that control these levels and modify the relation-
ships between them. A better understanding of the genes
and pathways that regulate the relationships between
these biomarkers may provide important insights into
AD pathology, even at the earliest stages of the disease.
Many large genome-wide association studies (GWAS)
have been successful in finding loci that affect AD bio-
markers such as Aβ42, tau, and ptau. In a series of pa-
pers, Hohman et al. [2–4] performed a variety of
analyses that screened for loci that modify the relation-
ship between various AD-related risk factors. More for-
mally, loci that affect the relationship between two or
more traits can be referred to as relationship loci or rela-
tionship quantitative trait loci (rQTL) [5]. Differential
gene-by-gene (G×G) and/or gene-by-environment (G×E)
interactions are often responsible for rQTL [6]. Screen-
ing for rQTL is a way to identify important loci that
would typically be “invisible” to normal GWAS because
they often do not show marginal effects on either trait
[7]. It is also a powerful avenue to identify G×G interac-
tions without paying the statistical penalty of performing
all possible two-locus tests. rQTL also provide a window
into pleiotropy, pleiotropic variability, and selection on
traits in complex interconnecting systems [8].
Here, we present the results of genome-wide screens for

rQTL using CSF levels of Aβ42, tau, and ptau subsequent
screens for loci that interact with them (G×G). We then
present analyses designed to connect the significant rQTL
and G×G loci from the primary analyses with AD itself,
first by testing the hypothesis that if a locus modulates the
relationship between two AD biomarkers (i.e., an rQTL) it
may modulate the risk relationship between AD and either
biomarker (i.e., an AD/biomarker rQTL), and finally we
follow-up with associations of these markers with AD risk
and rate of progression (rate of cognitive decline).
These analyses are designed to identify context-dependent

effects that are often not “seen” in traditional marginal effect
screens (i.e., a typical GWAS). We demonstrate that
they exist and that they may point us to other path-
ways. While interactions can be hard to detect and
interpret, they are expected in complex biological sys-
tems and they are important as they can create unex-
plained heterogeneity and can identify subgroups that
respond differently to treatment (G×E) or in the con-
text of other genes (G×G).

Methods
The data and analyses can be grouped into primary analyses
and follow-up. The primary analyses (rQTL and G×G
screens) use a large CSF AD biomarker dataset (n= 3146)
derived from nine separate studies. The follow up analyses
use different datasets to follow-up on the loci found in the
primary rQTL and G×G screens. There are three follow-up
analyses. The first uses the original CSF biomarker data to
determine if any of the significant biomarker rQTL act as
rQTL between disease (AD risk) and either biomarker. In
the second follow-up, the loci were tested for association
with AD risk using a large AD case/control dataset
(n = 28,730) from the Alzheimer’s Disease Genetic Consor-
tium (ADGC) and secondarily with results from the
International Genomics of Alzheimer’s Project (IGAP) con-
sortium (n = 54,162). The last follow-up is based on the as-
sociation with rate of progression (cognitive decline) which
was performed using data (n = 1499) from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the Charles F.
and Joanne Knight Alzheimer’s Disease Research Center
(Knight ADRC) from Washington University in St. Louis,
USA. Direct replication of these results is not possible at
this time as there are no other CSF AD biomarker datasets
sufficient for replication; we hope to remedy this in the
future. Our best approach akin to replication is to establish
a connection between these loci and relevant AD endpoints
such as risk and rate of progression.

Data and methods for the rQTL and G×G analyses
For the rQTL and G×G analyses, the dataset for CSF
biomarker analysis consisted of 3146 participants from
nine different studies and is described in detail in our
recent publication [9]. Included were 805 individuals
(29.34% cases) enrolled in studies at the Knight ADRC,
787 individuals (more than 71% cases) from the ADNI
(390 from ADNI1 and 397 from ADNI2), 184 individuals
(5.43% cases) from Predictors of Cognitive Decline
Among Normal Individuals (BIOCARD), 105 individuals
(no AD status) from Saarland University in Homburg/
Saar, Germany, 433 individuals (22.17% cases) from the
Mayo Clinic, 293 individuals (all cases) from Skåne
University Hospital, Sweden, 164 (62.8% cases) from
studies at Perelman School of Medicine at the University
of Pennsylvania, and 375 (33.33% cases) from studies at
the University of Washington. Table 1 shows the demo-
graphic data for each study. Clinical assessments, CSF
collection, and proteins were measured by each site.
Prior to combining data for analyses, CSF levels of tau,
p-tau, and Aβ42 were log10-transformed to approximate
a normal distribution and the mean from each dataset
was standardized to zero to account for the different
platforms used by the different studies to measure pro-
tein levels. There were no significant differences in the
transformed and standardized values for the different
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studies. Study, age, sex, and the first two principal compo-
nents were identified as confounding factors by stepwise
regression analyses for each protein and corrected for in
applicable analyses [9]; other papers have been published
that have combined data in similar ways [10, 11].

rQTL and G×G genetic data: for the rQTL and G×G analyses
Five million single nucleotide polymorphisms (SNPs)
(5,088,365) were included for analyses from the 12 million
available imputed SNPs after excluding those with a minor
allele frequency (MAF) less than 0.01. Data was imputed
using the 1000 Genomes Phase 3 data (October 2014) as
the reference panel [9]. For the rQTL screens we used a
standard 5 × 10−8 genome-wide significance threshold and
for the G×G screens we corrected for 5 × 10−8 divided by
the number of independent and significant rQTL from each
screen (tau/Aβ42 and ptau/Aβ42; see Table 3). Most ana-
lyses were performed using the Julia programming language
(v0.3.12) [12, 13] and some plots were made in R [14].

rQTL analyses
As a strategy to detect G×G interactions, we performed
genome-wide single-locus screens for rQTL [4] with the
CSF biomarker data. All models used the same covari-
ates: age, sex, series, APOε2, APOε4, and the first two
principle components for ancestry. Significant rQTL
were used as independent a-priori hypotheses to identify
G×G interactions. Two rQTL models were screened:

tau ¼ uþ covariatesþ Aβ42þ SNP þ Aβ42
� SNP ð1Þ

ptau ¼ uþ covariates þ Aβ42þ SNP þ Aβ42
� SNP ð2Þ

where the SNP genotypes are treated as factors and only ge-
notypes with a count of 20 or more were included, leading
to models with sufficient genotype counts for tests; either a

three-genotype model with 2 degrees of freedom (DF) or a
two-genotype model with 1 DF. A putative rQTL exists
when the Aβ42*SNP interaction term is significant when
compared with a null model excluding that term. Tests of
interaction terms sometimes exhibit type I error inflation
due to underestimates of the covariance matrix [15]. Work
performed by Bůžková et al. [16] and Voorman et al. [14]
showed that sandwich estimators and the parametric boot-
strap can be used to obtain valid p values, with the paramet-
ric bootstrap as the gold standard. For tests that initially
reached the significance threshold, empirical p values were
obtained via 200 million parametric bootstraps [5]. A stand-
ard 5 × 10−8 genome-wide significance threshold was used
for each rQTL screen.

G×G analyses
Context-dependent interactions such as G×E and G×G
create single locus patterns such as rQTL. Therefore,
each significant rQTL create independent a-priori hy-
potheses for G×E or G×G interactions. Previous papers
on two-stage designs for G×G and G×E studies have
shown that each a-priori locus (i.e., loci found in single
locus screens) can be treated separately for multiple test-
ing in genome screens for interaction [17–21]. For each
significant rQTL, we performed separate screens for loci
that interact (G×G) with each rQTL and their specific
traits. We corrected for 5 × 10−8 divided by the number
of independent and significant rQTL from each screen
(tau/Aβ42 and ptau/Aβ42).
Traditionally, in human genetics tests of G×G focus only

on the additive-by-additive (AA) contrast while interactions
between two biallelic loci can have up to four “orthogonal”
contrasts that are traditionally parameterized as AA,
additive-by-dominance (AD), dominance-by-additive (DA),
and dominance-by-dominance (DD). These other types of
interactions exist and would be missed with only an AA
test. Unfortunately, in natural populations, allele frequen-
cies are not 50/50 which results in unbalanced and

Table 1 Cohort demographics
Knight ADRC ADNI1 ADNI2 BIOCARD HB Mayo Sweden UPenn UW

n = 3146 805 390 397 184 105 433 293 164 375

Age (years) 70.39 ± 9.12 77.89 ± 6.89 73.28 ± 7.47 62.10 ± 9.46 67.52 ± 9.24 78.73 ± 6.35 75.15 ± 7.63 71.60 ± 8.98 62.35 ± 16

Age range (years) 37–91 58–93 55–92 23–86 45–84 50–95 50–88 50–94 21–88

Male (%) 46.09 60 54.91 41.53 54.29 60.51 37.54 41.46 50.67

APOE ε4 positive (%) 40.75 50 38.29 34.43 54.29 27.5 76.11 55.56 43.28

CDR > 0 (%) 29.34 71.28 71.03 5.43 – 22.17 100 62.8 33.33

Aβ42 levels
a 650.40 ± 305.59 169.83 ± 56.0 179.98 ± 51.31 386.90 ± 89.93 77.59 ± 23.30 331.0 ± 122.21 262.43 ± 72.77 163.55 ± 53.54 141.90 ± 41.42

p-tau181 levels
a 64.94 ± 34.26 34.13 ± 18.52 38.63 ± 21.21 38.94 ± 12.30 – 23.16 ± 10.55 105.76 ± 41.82 36.96 ± 26.80 56.56 ± 29.32

tau levelsa 372.40 ± 235.41 97.26 ± 52.03 79.69 ± 47.79 66.56 ± 26.60 84.27 ± 36.79 104.29 ± 58.06 782.20 ± 301.68 93.66 ± 54.29 61.64 ± 42.77
aReported as mean ± standard deviation in pg/mL
ADRC Alzheimer’s Disease Research Center, ADNI Alzheimer’s Disease Neuroimaging Initiative, APOE apolipoprotein E, BIOCARD Predictors of Cognitive Decline
Among Normal Individuals, CDR Clinical Dementia Rating, HB Saarland University in Homburg/Saar, Germany, Mayo Mayo Clinic, Sweden Sahlgren’s University
Hospital, Sweden, UPenn Perelman School of Medicine at the University of Pennsylvania, UW University of Washington
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sometimes missing cells (two-locus genotypes). The unbal-
anced cell counts makes the “orthogonal” contrasts no
longer orthogonal and sometimes inestimable when there
are missing cells [22–24]. We used a simple interaction test
that avoids the need for explicit parameterization of the
interaction contrasts and only accounts for interactions
with sufficient data for estimation. Our full model incorpo-
rates covariates and treats the two-locus genotypes as
factors similar to a one-way analysis of covariance
(ANCOVA). The reduced model includes the covariates
and treats the genotypes from each individual locus as fac-
tors [25]. The full model accounts for all single and
two-locus interaction effects without explicitly parameteriz-
ing them while the reduced model explicitly accounts for
just the single locus effects. With sufficient counts for all
two-locus genotypes the test has 4 DF. All two-locus geno-
types with counts less than five were excluded which
ensures that estimation of the interaction effect is appropri-
ate while avoiding the issues of inestimable contrasts or
trying to determine explicit contrasts for each particular
case. Below is an example of the full model:

trait ¼ uþ covariatesþ TwoLocGenotypes ð3Þ

where the two-locus genotypes are treated as factors,
and below is an example of the reduced model where
the genotypes of each SNP are treated as factors:

trait ¼ uþ covariatesþ rQTLþ SNP ð4Þ

Parametric bootstrapping [5, 16] was applied to any
test that initially met the significance threshold with 100
million replicates.

Follow-up
We attempted to connect the significant rQTL and G×G
loci identified in the primary biomarker analyses to AD
etiology in three different ways. First, we determined if
each rQTL between biomarkers acts as an rQTL be-
tween AD risk and either of the two biomarkers. This
hypothesis extends from the observation that if a locus
affects the relationship between two risk factors, it may
also modify the relationship between those risk factors
and disease. Therefore, each rQTL was fitted for an
analogous rQTL model using logistic regression between
Alzheimer’s case/control status and that risk factor using
the same CSF biomarker data. Second, we used a large
AD case/control dataset to assess whether any of the
rQTL or G×G loci are directly associated with AD risk.
Finally, we use a different dataset to assess if any of these
loci are associated with disease progression via rate of
cognitive decline.

Data (ADGC and IGAP) and methods for AD risk analyses
We used two datasets for connecting the loci to AD risk
through AD case/control data. We used the ADGC as
our primary analyses but also report the results from
IGAP. While the IGAP study is larger (it includes
ADGC), we feel that the ADGC data alone is more
homogenous and is a closer match in terms of ethnic
composition to our discovery dataset. The ADGC is an
NIH-funded collection of GWAS data created for the
goal of identifying genetic contributions to late-onset
AD. Participants included in this study were from 30
merged datasets [26] combined by Boehme et al. [27]
and included 25,666 unrelated individuals carrying either
an AD (n = 12,532) or cognitively normal control clinical
diagnosis (n = 13,134). Participants were recruited and
seen between 1984 and 2012. The genetic data are based
on merging the different imputed ADGC datasets.
Before merging, SNPs within each dataset with low
imputation quality (info < 0.5) were filtered out. Dosage
information was used to convert to best guess PLINK
allele call format files with an uncertainty cutoff of 0.1.
Duplicate samples were identified and removed. Other
quality control issues such as physical location discrep-
ancies and strand flipping were identified and appropri-
ately dealt with. A kinship coefficient of 0.0442 was used
to screen out third-degree relatives or closer. The result-
ing number of SNPs in the unrelated dataset was ~ 8.6
million. We only used the SNPs corresponding to our
significant rQTL and G×G loci, as simple logistic regres-
sion analysis was performed to assess the association be-
tween our SNPs and case control status using age, sex,
cohort, and two principle components as covariates. Full
details on the datasets and the merging process are
available at [27].
The IGAP consortium organized AD case/control data

from many different studies across the world. For stage 1 of
their analysis they used meta-analysis methods for the asso-
ciation between ~ 7 million SNPs and AD case/control data
(n = 54,162; 17,008 cases, 37,154 control) from four studies
(ADGC, CHARGE, EADI, and GERAD) [28]. We used the
results from the stage 1 analyses to determine whether any
of the significant rQTL or G×G loci are associated with AD
risk. In the preparation of the genetic data, Lambert et al.
[28] excluded SNPs with call rates < 95%, imputed using
samples of European ancestry in the 1000 Genome Project,
and excluded SNPs with MAF < 1%. In each case/control
dataset, the association of late-onset Alzheimer’s disease
with genotype dosage was analyzed by a logistic regression
model including covariates for age, sex, and principal com-
ponents to adjust for possible population stratification. For
the three CHARGE cohorts with incident Alzheimer’s dis-
ease data, Cox proportional hazards models were used. For
the meta-analysis they undertook a fixed-effects inverse
variance-weighted meta-analysis with the standard errors of
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the beta coefficient scaled by the square roots of
study-specific genomic inflation factors estimated before
combining the summary statistics across datasets [28].
About half of the samples from the CSF AD biomarker

data can be found in both the ADGC and IGAP datasets
and only represent ~ 5.5% and ~ 3% of the ADGC and
IGAP samples. It is also important to note that the ana-
lyses leading to these follow-up tests for association with
case/control status in ADGC and IGAP are based on
rQTL and G×G analyses using Aβ42, tau, and ptau and
not any explicit single-locus test for association with
case/control status in the CSF samples.

Data and methods for rate of progression analyses
A total of 1499 individuals with longitudinal cognitive
data and genetic data were used to assess the association
of the significant rQTL and G×G loci with rate of pro-
gression or the rate of cognitive decline. More extensive
descriptions of the data and methods are described else-
where [29]. Participants from this study were enrolled in
two different longitudinal studies: the Knight ADRC at
Washington University (n = 778) and the ADNI (n = 712).
Participants were evaluated in accordance with the Clin-
ical Dementia Rating (CDR) scale, where 0 indicates
cognitive normality, 0.5 is very mild dementia, 1 is mild
dementia, 2 is moderate dementia, and 3 is severe demen-
tia [30, 31]. The scores in each of the six areas are
summed to yield a sum of box (CRD-SB) scores ranging
from 0 (no impairment) to 18 (maximal impairment).
Only participants that had an AD diagnosis and CDR > 0
at their last visit were included in our analyses. Individuals
with dementia caused by neurological diseases other than
AD were excluded. For those samples with data available,
individuals with Aβ42 values equal or greater than
192 pg/mL (ADNI) [32] or 500 pg/mL (WU) [33] were
also excluded. Noninformative longitudinally measured
CDR-SB was removed for each participant (noninforma-
tive longitudinal data is defined as data where the CDR-SB
is either 0 or 18 and remains constant over a period of
time). Only individuals with at least two visits and 1.5 years
of follow-up were included.
Participants were genotyped with the Illumina 610 or

Omniexpress chip (Illumina, San Diego, CA, USA).
IMPUT2 v2.3.2 software and the 1000 genome (phase3
NCBI build 37) data were used as reference to impute
up to 6 million SNPs. To avoid the possibility of spuri-
ous associations of population structure and to confirm
ethnicity of each sample, the two principal components
scores were used as covariates in the analysis. Only indi-
viduals that clustered with the European-American clus-
ter were included in the study.
A linear mixed-model analysis was carried out using R

statistical software [14] and the nlme package [34]. A lin-
ear mixed-model repeated measure framework was used

to account for correlation between repeated measures in
the same individual. Change in CDR-SB per year was
treated as the independent variable including the follow-
ing covariants: baseline CDR, baseline age, gender, time
(follow-up), level of education, the interaction between
baseline CDR and time, and, to avoid the possibility of
spurious association due to population substructure, the
two first principal components scores were included as co-
variates, and a random effect for time and individual was
included in the model with an AR(1) covariance structure.

Results
From our rQTL analyses we identified four genome-wide
significant tau/Aβ42 rQTL from three unique locations
and six ptau/Aβ42 rQTL from five unique locations
(Table 2). Using the significant rQTL (one from each
unique location) as a priori hypotheses, subsequent G×G
screens identified loci from four different regions involved
in significant two-locus interactions with four of the rQTL
(one Aβ42, one tau, and two ptau) (Table 3, Fig. 1) (see
“Data and methods for the rQTL and G×G Analyses” in
Methods). The respective threshold for G×G screens with
the tau/Aβ42 rQTL was p < 1.67 × 10−8 and p < 1 × 10−8

for G×G screens with the ptau/Aβ42 rQTL.
In follow-up, two ptau/Aβ42 rQTL were significantly

associated with AD case/control status in the ADGC
dataset (rs1036819, p = 1.9 × 10−5; rs74025622, p = 0.044);
however, they were not significant in IGAP (rs1036819,
p = 0.091; rs74025622, p = 0.427) (see the first few para-
graphs of “Follow-up” in Methods). In addition, rs1036819
is also a very strong rQTL for both AD case/control sta-
tus/Aβ42 (p = 6.2 × 10−8) and tau/Aβ42 (p = 6.17 × 10−5),
while rs74025622 is involved in G×G interactions with
three other loci (Table 3) (see the first paragraph of
“Follow up” in Methods). While not significant in ADGC,
rs1558634 (a ptau G×G locus; Table 3) is significantly
associated with AD risk in IGAP (p = 0.0058). Two loci
(rs15205, p = 0.019; rs79099429, p = 0.034) are significant
for rate of decline (see “Data and methods for Rate of Pro-
gression Analyses” in Methods). rs15205 is a ptau/Aβ42
rQTL (Table 2) involved in a ptau G×G interaction and
rs79099429 is a ptau/Aβ42 rQTL (Table 2). Plots similar
to Fig. 1 for each interaction in Table 3 can be found in
Additional file 1 (Figures S1–S3) along with brief com-
ments. Further annotations for the variants in Tables 2
and 3 can be found in Additional file 2 (Tables S1 and S2).

Discussion and conclusions
From our analyses, we have found evidence for rQTL
that modulate the relationship between AD biomarkers.
Furthermore, we have found that some of these rQTL
interact with other loci (G×G), and some of these inter-
actions directly contribute to the rQTL pattern. Ultim-
ately, some of these loci affect the relationship between
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these biomarkers and AD and also directly affect the risk
for AD and rate of decline.
The most intriguing result is the rs1036819 ptau/Aβ42

rQTL on chromosome 8 (Table 2), which is the second
most significant rQTL found in our study. In follow-up
a-priori tests, there is strong evidence that rs1046819 is
also an rQTL for Aβ42 and AD case/control status and
an rQTL for tau/Aβ42. This means that rs1036819 (or
something associated with it nearby) modifies the rela-
tionship between Aβ42 and ptau, tau, and AD risk. In
the separate and much larger AD risk dataset, rs1036819
is genotypically significantly associated with AD case/
control status (p = 1.95 × 10−5) and there is a mild (but
not significant) suggestion that it may impact the rate of
decline (p = 0.0685). However, rs1036819 is not associ-
ated with case/control status in IGAP. It may be associ-
ated in ADGC because the CSF samples represent a
higher concentration of samples in ADGC (~ 5.5%) than
IGAP (~ 3%) or because ADGC represents a more

homogeneous sample from populations more closely
matching the CSF AD biomarker samples. The ptau/
Aβ42 rQTL pattern shows a moderate negative
covariate-corrected correlation between ptau and Aβ42
in the common AA and AC genotypes (−0.169 and
−0.19), but a dramatically stronger negative correlation
in the rare CC homozygote (−0.414). This appears to
mirror the within genotype relationships between AD
case/control status and Aβ42 where the rare homozy-
gote has a much stronger negative relationship. The rare
homozygote is also what drives the direct association
with AD case/control status in the much larger inde-
pendent dataset.
It is not entirely clear why rs1036819 or the region

around it is important; however, it is a very strong
GWAS hit for pelvic organ prolapse along with the most
significant rQTL (rs8027714) in the study [35]. We are
not suggesting that pelvic organ prolapse is related to
AD or to the ptau/Aβ42 relationship; instead, this

Table 2 Table of genome-wide significant rQTL p values based on 200 million parametric bootstraps

Trait pair SNP Chrom Location Maj/Min (MAF) p value Gene Left gene Right gene

tau/Aβ42 rs74131475 1 194252450 C/T (0.089) 3.33 × 10–8 LOC107985242 EEF1A1P14 RNU6-983P

tau/Aβ42 rs1936361 10 102370841 C/T (0.444) 5.00 × 10–9 HIF1AN PAX2

tau/Aβ42 rs118023102 16 75983693 G/A (0.027) 3.33 × 10–8 LOC105371348 LOC105371349

tau/Aβ42 rs74025622a 16 75999881 A/G (0.028) < 5 × 10–9 LOC105371348 LOC105371349

p-tau/Aβ42 rs15205b,c 3 44966906 A/T (0.028) < 5 × 10–9 ZDHHC3 TGM4 EXOSC7

p-tau/Aβ42 rs79099429b,c 3 44993764 T/C (0.029) < 5 × 10–9 ZDHHC3 TGM4 EXOSC7

p-tau/Aβ42 rs689167 6 52785560 G/A (0.362) < 5 × 10–9 GSTA3 GSTA9P

p-tau/Aβ42 rs1036819a 8 135611945 A/C (0.261) < 5 × 10–9 ZFAT LOC100129104 LOC286094

p-tau/Aβ42 rs112959610 13 57488227 G/A (0.465) 2.67 × 10–8 RN7SKP6 PRR20A

p-tau/Aβ42 rs8027714 15 24964597 G/A (0.201) < 5 × 10–9 C15orf2 SNRPN

Chrom Chromosome, MAF minor allele frequency, Maj Major Allele, Min Minor Allele, rQTL relationship quantitative trait loci, SNP single nucleotide polymorphism
aNominally significant for case/control status
bNominally significant for rate of decline
cNominally significant for Aβ42

Table 3 Table of genome-wide significant G×G interactions with rQTL

Trait rQTL SNP2 Chrom Location Maj/Min (MAF) p value Gene Left gene Right gene

Aβ42 rs8027714 rs57134082 12 40057892 T/A (0.166) < 5 × 10–9 C12orf40 ABCD2 SLC2A13

tau rs74025622 rs9817620b 3 261440 T/C (0.062) 1.50 × 10–8 CHL1 LOC642891 LOC402123

tau rs74025622 rs73105331a,b 7 52374812 C/T (0.031) 3.00 × 10–8 LOC107986796 LOC107986738

tau rs74025622 rs75034965b 22 35710231 G/A (0.144) 3.75 × 10–8 TOM1 HMGXB4 HMOX1

p-tau rs689167 rs1558634 7 29553339 C/T (0.125) 1.00 × 10–8 CHN2 NANOGP4 LOC646745

p-tau rs79099429a,c rs79688703b 16 7899349 T/C (0.059) 5.00 × 10–9 RBFOX1 LOC105371069

p-tau rs15205a,c rs79688703b 16 7899349 T/C (0.059) 2.75 × 10–8 RBFOX1 LOC105371069

p values based on 100 million parametric bootstraps
SNPs and p values in bold are significant after correcting for the number of independent and significant ptau/Aβ42 rQTL (p < 1 × 10−8); those underlined are
significant after correcting for the tau/Aβ42 rQTL (p < 1.67 × 10−8); the rest are not mentioned in the text and are suggestive
Chrom Chromosome, G×G gene-by-gene,MAFminor allele frequency,MajMajor Allele,MinMinor Allele, rQTL relationship quantitative trait loci, SNP single nucleotide polymorphism
aNominally significant for rate of decline
bNominally significant for Aβ42 G×G
cNominally significant for direct association with Aβ42
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suggests that rs1036819 and rs8027714 may share some bio-
logical and potentially disease-related pathway. rs1036819
lies in a noncoding RNA (ncRNA) in an intron of the ZFAT
gene and has a RegDB score of four, binds to the POL2 and
POL24H8 proteins, and alters a Foxf2 regulatory motif.
ZFAT is related to autoimmune thyroid disease [36]. This is
of interest since various papers have asserted a relationship
between the immune system and AD [37–39]. In addition,
rs8027714 also interacts (G×G) with another locus for Aβ42
(Table 3, Fig. 1).
Another interesting finding involves the tau/Aβ42

rQTL, rs74025622. It interacts with three different loci for
tau (Table 3, Additional file 1: Figure S2). It is upstream
(5’) of a large GWAS hit for sphingolipids in the

CNTNAP4 gene, which has a role in neurotransmission of
the dopaminergic and GABAergic systems, and mutations
may be related to certain psychiatric illnesses. One par-
ticular locus it interacts with, rs9817620, is in the CHL1
gene. The G×G is genome-wide significant for tau, has a
nominally significant interaction for Aβ42 (p = 0.0013),
and the pattern of interaction differs for the two traits in a
way that creates the rQTL pattern of tau/Aβ42 correlation
changes across genotypes (see Fig. 1a). CHL1 is a neural
cell adhesion molecule and may be involved in signal
transduction pathways [40]. CHL1 is related to BACE1 as
a substrate [41], which is a β-secretase enzyme [42] that
initiates production of the β-amyloid peptide involved in
AD and is a primary drug target [43]. BACE1-deficient

A B

Fig. 1 Each column plots (a and b) the relationship quantitative trait loci (rQTL) pattern and two gene-by-gene (G×G) interaction patterns (one for
each trait from the original rQTL model) between the rQTL and a specific SNP. The trait for which the rQTL×SNP interaction was found significant in
the screen (Table 2) is the top plot. The middle G×G plot was not found in the G×G screens but is displayed to show the differential two-locus
genotypic mean patterns between the traits and how they relate to the rQTL pattern. rQTL are often the result of G×G patterns that are differential
across traits. The x axis for all plots in a column refers to the genotypes of that specific rQTL. The bottom plot displays the rQTL pattern, which is the
covariate-adjusted correlation between the two traits within each genotype of the rQTL along with error bars based on SE from bootstrapping. The
G×G plots display the covariate-adjusted two-locus genotypic means for that particular trait (y axis) along with SE error bars based on bootstrapping. a
The rs8027714 tau/Aβ42 rQTL interaction with rs57134082 for amyloid-beta (Aβ)42 (top plot) (Table 3) and under nominal for tau (middle; p = 0.088).
Note the differential pattern between the two interaction plots although it is not clear how they relate to the rQTL pattern. b The tau/Aβ42 rQTL
rs74025622 interactions with rs9817620 for tau (top plot) (Table 2) and Aβ42 (middle; p = 0.0013). Here, the differential G×G patterns for tau and Aβ42
directly result in changing the tau/Aβ42 correlations across the rQTL genotypes. For tau, the rs9817620 TC genotype goes from high to low across the
rs74025622 genotypes (from AA to AG) while the opposite is true for Aβ42. This corresponds to a much more negative correlation between tau and
Aβ42 in the rs74025622 AG genotype. rs9817620 is in the CHL1 gene (see Discussion)
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mice showed phenotypic similarities to mice with CHL1
loss of function [44].
Only two of the 10 rQTL and one of the second G×G loci

show any nominal direct association (i.e., a marginal/mean
effect) with either of the traits in the rQTL or G×G models.
This follows a trend where rQTL usually do not (but can)
show a direct marginal (mean) effect with any of the traits
in the rQTL making them invisible to typical association
studies [5]. Theoretically, rQTL are often due to interactions
with other loci or environments [6]. Specifically, differential
epistasis occurs when the pattern of interaction between
two loci differs across traits leading to trait1/trait2 correl-
ation heterogeneity across the genotypes of one or both of
the interacting loci. While interactions were not found for
all rQTL, a number were found and, of those, many had a
pattern of interaction with the two traits that directly con-
tribute to the rQTL pattern (see Fig. 1 and Additional file 1:
Figures S1–S3).
The greatest limitation of this study is the lack of an

appropriate CSF biomarker study for replication of the
rQTL and G×G. The purpose of this work is to generate
hypotheses for future, large CSF biomarker studies to
test. Consequently, we are not making grand assertions
about our findings and our group is actively working to
produce and assemble another CSF dataset that can be
used for validation in the future. In fact, we are in a
similar situation to the original authors of the recent
paper [29] that performed the first analysis of the rate of
progression in the ADNI and Knight ADRC data. They
did not have a validation set and stated that their findings
were meant to create hypotheses for future studies. Here
we are using a small subset of their data and methods to
connect our findings to make meaningful connections to
disease progression. Subsequently, we have shown that
some of these loci directly relate to AD through associa-
tions with AD risk and with rate of progression.
While context-dependent effects are hard to detect

and to interpret, they are expected in biological systems
and can help explain some of the heterogeneity among
individuals. One hope is that with interactions we can
identify subgroups that act differently from the “norm”
and that these “exceptions” may help us to understand
the more general responses or lead to different biological
pathways.

Additional files

Additional file 1: Additional rQTL and interaction plots. Figures S1, S2,
and S3 show plots for each significant G×G along with their
accompanying rQTL corresponding to Table 3 in the text and similar to
Fig. 1 in the main text. (PDF 297 kb)

Additional file 2: Additional annotations for rQTL and G×G SNPs.
Contains additional annotations for the rQTL in Table 2 and G×G SNPs in
Table 3 in the main text. (XLSX 12 kb)
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