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Alpha-synuclein biology in Lewy body diseases
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Abstract

α-Synuclein is an abundantly expressed neuronal protein that is at the center of focus in understanding a group of
neurodegenerative disorders called α-synucleinopathies, which are characterized by the presence of aggregated
α-synuclein intracellularly. Primary α-synucleinopathies include Parkinson’s disease (PD), dementia with Lewy bodies
and multiple system atrophy, with α-synuclein also found secondarily in a number of other diseases, including
Alzheimer’s disease. Understanding how α-synuclein aggregates form in these different disorders is important for
the understanding of its pathogenesis in Lewy body diseases. PD is the most prevalent of the α-synucleinopathies
and much of the initial research on α-synuclein Lewy body pathology was based on PD but is also relevant to Lewy
bodies in other diseases (dementia with Lewy bodies and Alzheimer’s disease). Polymorphism and mutation studies
of SNCA, the gene that encodes α-synuclein, provide much evidence for a causal link between α-synuclein and PD.
Among the primary α-synucleinopathies, multiple system atrophy is unique in that α-synuclein deposition occurs in
oligodendrocytes rather than neurons. It is unclear whether α-synuclein originates from oligodendrocytes or
whether it is transmitted somehow from neurons. α-Synuclein exists as a natively unfolded monomer in the cytosol,
but in the presence of lipid membranes it is thought to undergo a conformational change to a folded α-helical
secondary structure that is prone to forming dimers and oligomers. Posttranslational modification of α-synuclein,
such as phosphorylation, ubiquitination and nitration, has been widely implicated in α-synuclein aggregation
process and neurotoxicity. Recent studies using animal and cell models, as well as autopsy studies of patients with
neuron transplants, provided compelling evidence for prion-like propagation of α-synuclein. This observation has
implications for therapeutic strategies, and much recent effort is focused on developing antibodies that target
extracellular α-synuclein.
Introduction
α-Synuclein is a 140 amino acid, natively unfolded pro-
tein predominantly localized in the presynaptic terminals
of neurons. In the past two decades α-synuclein has
been the center of focus in understanding the etiology of
a group of overlapping neurodegenerative disorders called
α-synucleinopathies, which includes Parkinson’s disease
(PD), Parkinson’s disease dementia (PDD), dementia with
Lewy bodies (DLB), multiple system atrophy (MSA) and a
number of less-well characterized neuroaxonal dystro-
phies. α-Synuclein is encoded by the SNCA gene on 4q21,
and was first identified as the nonamyloid component
of β-amyloid plaques in the brain of patients with
Alzheimer’s disease (AD) [1]. Although AD is pathologically
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quite distinct from α-synucleinopathies, α-synuclein ag-
gregates have been found in the majority of AD brains,
mostly restricted to the amygdala [2,3]. Despite much re-
search into α-synuclein biology, the exact function of
α-synuclein is still elusive. α-Synuclein is thought to
play a role in maintaining a supply of synaptic vesicles
in presynaptic terminals. The protein has also been sug-
gested to be involved in regulating the release of the
neurotransmitter dopamine in controlling voluntary
and involuntary movements.
The universal feature of α-synucleinopathies is the

presence of proteinaceous intracellular entities or bodies
containing aggregates of α-synuclein. These bodies differ
somewhat in appearance in different α-synucleinopathies,
and are called Lewy bodies in PD and DLB [4], glial cyto-
plasmic inclusions in MSA [5] and axonal spheroids in
neuroaxonal dystrophies [6]. Much evidence indicates that
the mechanism underpinning α-synucleinopathies is the
misfolding of α-synuclein into aggregates [4]. In vitro
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studies have shown that α-synuclein aggregates (that is,
oligomers) cause a series of secondary processes leading
to neuroinflammation, neurodegeneration and cell death
[7]. Apart from the pathogenic dogma of neurotoxicity of
aggregated α-synuclein, loss of α-synuclein monomers
(that is, loss of function) from their physiological location
may also contribute to neurodegeneration [8]. A radical
idea of prion-like propagation has been proposed for
α-synuclein transmission between cells. New develop-
ments in α-synuclein transmission highlight the import-
ance of extracellular α-synuclein in therapeutic strategies.
In this review we will discuss α-synuclein biology, α-
synucleinopathies and recent developments in α-synuclein
disease mechanisms and therapies.

α-Synuclein biology
α-Synuclein is abundantly expressed in the human brain,
making up as much as 1% of protein content in the cyto-
sol. This protein is expressed throughout the brain, with
high levels in the neocortex, hippocampus, substantia
nigra, thalamus and cerebellum. It is predominantly ex-
pressed in neurons and to a lesser extent in glial cells.
Apart from the predominant 140 amino acid protein,
there are at least two other alternatively spliced variants
of the protein; the 126 amino acid and 112 amino acid
variants that lack exon 3 and exon 5, respectively [9].
The α-synuclein protein has three distinct structural do-
mains. The amphipathic N-terminal region (residues 1
to 60) contains 11 amino acid repeats including the con-
sensus sequence KTKEGV, which is important in α-helix
formation [10]. The central hydrophobic region (residues
61 to 95) contains the nonamyloid component region,
which is important in protein aggregation [4]. Finally,
the C-terminal region (residues 96 to 140) is highly acidic
and proline rich.
α-Synuclein is encoded by the SNCA gene. PD genome-

wide association studies have shown that single nucleotide
polymorphisms in SNCA are strongly associated with an
increased risk for idiopathic PD [11-14]. The SNCA mis-
sense mutation Ala53Thr was the first causal mutation
identified in dominantly inherited PD [15]. Several SNCA
missense mutations (for example, Glu46Lys, His50Gln,
Gly51Asp and Ala30Pro) have since been identified in
dominantly inherited PD [16-19]. In 1998 Conway and
colleagues demonstrated that SNCA missense mutations
accelerated α-synuclein fibril formation in vitro, implicat-
ing α-synuclein misfolding and aggregation in PD patho-
genesis [20]. SNCA duplication and triplication have also
been identified in PD subjects [21-25].
Although the exact function of α-synuclein is unknown,

α-synuclein is thought to play a role in maintaining a sup-
ply of synaptic vesicles in mature presynaptic terminals,
because its expression was detected only after synaptic de-
velopment [26]. In vitro knockdown studies showed that
α-synuclein regulates the quantity of different pools of
synaptic vesicles in mature neurons [26], influencing syn-
aptic activity as a molecular chaperone in the formation of
SNARE complexes [27], a requirement for presynaptic
nerve terminal release of neurotransmitters [28]. In this
way, α-synuclein may regulate the release of dopamine
in controlling voluntary and involuntary movements,
or might influence memory and cognitive function as
shown in SNCA knockout mice [29]. This function of
α-synuclein becomes more important during increased
synaptic activity and aging, and could be a contribu-
tory factor in neurodegeneration.
Posttranslational modification of α-synuclein
Posttranslational modification of α-synuclein is prevalent
and altered α-synuclein proteins impact on a number of
pathological processes, including α-synuclein aggrega-
tion, Lewy body formation and neurotoxicity. The most
common posttranslational modification of α-synuclein is
phosphorylation, which occurs predominantly at serine
residues S129 and, to a lesser extent, S87 and at tyrosine
residues Y125, Y133 and Y135 [30,31]. In DLB brains,
approximately 90% of insoluble α-synuclein is phosphory-
lated at S129 compared with only 4% in soluble cytosolic
α-synuclein [32], implicating phosphorylated α-synuclein
in the process of α-synuclein aggregation.
The second most common posttranslational modifica-

tion of α-synuclein is ubiquitination – the attachment of
ubiquitin to α-synuclein at lysine residues. Although α-
synuclein contains 15 lysine residues, α-synuclein isolated
from Lewy bodies shows that the protein is ubiquitinated
mainly at K6, K10 and K12 residues. Ubiquitination of α-
synuclein causes changes in α-synuclein function/activity,
impacting on α-synuclein localization and α-synuclein
degradation processes [33-35].
Another common posttranslational modification of α-

synuclein is nitration – the attachment of a nitro molecule
to α-synuclein at tyrosine residues (Y39, Y125, Y133 and
Y136). High concentrations of nitrated α-synuclein are
found in Lewy bodies [36]. Nitration of α-synuclein is en-
hanced under conditions of elevated oxidative stress,
which is widely regarded as an important factor in Lewy
body diseases. In vitro studies have shown that nitration of
α-synuclein induced α-synuclein oligomer formation and
mitochondrial impairment, leading to apoptosis via the in-
tegrin pathway [37]. In a PD cell model, nitration of α-
synuclein (via increased nitric oxide production) caused
increases in the level of neurotoxic α-synuclein species
and cell death [38].
Prion-like propagation of α-synuclein
In 2008, two autopsy studies of patients with PD who
survived more than 10 years after receiving successful
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transplants of embryonic dopamine neurons to treat their
disease observed that the surviving transplanted neurons
had α-synuclein accumulation in typical Lewy bodies
[39,40]. The only way these neurons could have such pa-
thology was by a propagating mechanism, a concept of
transmission more commonly associated with prion dis-
eases [41]. It should be noted that Braak and colleagues
had in 2003 proposed a transmissible mechanism for α-
synuclein propagation based on observations that the dis-
ease seemed to start in the nose and/or gut and progress
to invade the brain in a staged manner [42,43]. A number
of subsequent studies in animal and cell culture models
have proven this concept of transmission of α-synuclein
between neurons, showing that exogenous α-synuclein in-
duces Lewy body pathology along neuroanatomical path-
ways in the brain (for example [44-48]). It should be
noted that it is the conformation of the protein that is
transmitted to endogenous protein residing within neu-
rons, as in mouse models the aggregates from exogenous
sources disappear in about a week with endogenous aggre-
gates beginning around 3 months later [49]. This observa-
tion suggests that a particular strain of α-synuclein is
transmitted between neurons.
Consistent with the concept of different prion strains

[50], a number of studies have now identified and char-
acterized different strains of α-synuclein. Strains made
in vivo exhibit fundamentally different properties, in-
cluding the packing of their building blocks and growth
and amplification properties, as well as their tropism,
cellular binding and penetration properties and toxicity
[51,52]. These differences can be exaggerated by modi-
fying the solution concentration, molecular crowding,
agitation, temperature, pH and ionic strength [53]. Ex-
ogenous factors that accelerate the in vitro aggregation
of α-synuclein include agrochemicals, polycations, his-
tones, metal ions, glycosaminoglycans, sodium dodecyl
sulfate and organic solvents, while factors that inhibit
α-synuclein aggregation include small chemical com-
pounds, heat shock proteins, PAMAM dendrimers, β-
synuclein and γ-synuclein, catecholamines, phospholipids,
rifampicin, trehalose and oxidative modifications [53]. The
combination of different factors may impact on the strains
of α-synuclein in different people and may explain some
of the heterogeneity that is known both clinically and
pathologically, and especially in the dynamics of the differ-
ent types of Lewy body diseases [54]. Morphological and
structural differences have been noted in patients with
Lewy bodies consistent with the concept of different
α-synuclein strains – Lewy bodies in the brainstem
are morphologically different from those in the cortex
[55], and conformationally different strains of α-synuclein
have been identified from cortical tissue samples of pa-
tients with PD depending on the presence or absence of
Alzheimer pathologies [52].
Binding and interaction of α-synuclein with lipid
membranes
Under normal conditions, α-synuclein exists as a ran-
domly structured and natively unfolded protein and
remains as a monomer within the cytoplasm. Under pa-
thological conditions, however, α-synuclein undergoes
structural/conformational changes causing the monomers
to aggregate with each other and become insoluble. Much
evidence suggests that changes to the α-synuclein struc-
ture and properties are initiated when the protein binds
and interacts with lipid surfaces, such as lipid drop-
lets, phospholipid bilayers or lipid membranes. When
α-synuclein monomers, isolated from human neurons,
were exposed to synthetic lipid membranes, they readily
bound to the membrane surface and formed dimers and
oligomers [56,57]. Such an interaction is thought to in-
duce a dramatic change in α-synuclein structure from its
unfolded form to a folded α-helical secondary structure
[57]. The imperfect repeats of 11 amino acids present in
α-synuclein, similar to the amphipathic α-helical motif
common to apolipoproteins and other lipid-binding pro-
teins, appear to play an important role in the lipid mem-
brane binding process [58]. What is significant about such
a change is that the α-helical form of α-synuclein is prone
to forming different types of oligomers, the species that
are thought to be toxic to cells. The lipid composition of
membranes has been shown to affect the binding/inter-
action of α-synuclein to the membrane and subsequent
oligomerization [56,59]. α-Synuclein is thought to pre-
ferentially bind to regions of membranes that are en-
riched in lipids [60]. These regions are called lipid rafts
and are characterized by high concentrations of choles-
terol and sphingolipids and altered surface charge that
may favor α-synuclein binding. The lipid rafts appear to
serve as a platform that promotes α-synuclein binding
and oligomerization.
Contrary to overwhelming evidence that α-synuclein

exists as an unfolded monomer in the cytosol, Bartels and
colleagues reported that endogenous α-synuclein exists
predominantly as a folded tetramer (~58 kDa) [61]. The ex-
planation provided by the authors for this apparent differ-
ence is that most studies claiming the unfolded monomer
hypothesis commonly use sample heating and denaturing
gels to analyze α-synuclein, whereas the authors used non-
denaturing conditions. They have also provided evidence
by other means – that is, scanning transmission electron
microscopy and cell cross-linking – to confirm the preva-
lence of α-synuclein tetramer in neurons and human brain
tissues [61]. Bartels and colleagues proposed that since
α-synuclein tetramers are less likely to form aggregates,
the tetramers first undergo destabilization prior to form-
ing aggregates. The authors suggested that stabilizing the
physiological tetramers could reduce α-synuclein patho-
genicity in PD and other α-synucleinopathies.



Kim et al. Alzheimer's Research & Therapy 2014, 6:73 Page 4 of 9
http://alzres.com/content/6/5/73
Dementia with Lewy bodies
DLB was initially identified as a dementia syndrome with
Lewy body pathology [62], which is now incorporated in
the Diagnostic and Statistical Manual criteria as a cli-
nical disease entity (neurocognitive disorder with Lewy
bodies). Current objective data suggest that the sensitiv-
ity of accurate clinical diagnosis is very low, however,
with most clinical cases identified actually having AD ra-
ther than DLB at autopsy [63-68], and therefore current
diagnostic criteria for DLB exclude cases with coexisting
AD pathology [62]. Although DLB remains easy to identify
pathologically with different cellular pathologies differen-
tiating it from other dementia syndromes, pathological
identification using only Lewy body pathology has been
shown to be inaccurate due to overlap with patients
without dementia symptoms. Current neuropathological
criteria state that neurocognitive syndromes with Lewy
bodies are most likely when Lewy bodies are prevalent in
at least limbic brain regions, but are also often found in
association neocortices [69]. A number of studies have
shown that a combination of cellular pathologies, which
include α-synuclein and β-amyloid deposition as well as
dopamine denervation, assist with differentiating this de-
mentia syndrome from others [54]. Approximately 25% of
DLB patients display significant parkinsonian symptoms
at the onset of disease, consistent with an early dopamine
denervation, whereas 25% of DLB patients never develop
any parkinsonian symptoms and have less significant
dopamine loss. DLB is best conceptualized as a dominant
dementia syndrome with multiple pathologies that include
Lewy bodies and more frequently has multiple pathologies
compared with AD [70]. The diversity of clinical pheno-
types associated with DLB is likely to reflect the timing
and different combinations of these pathologies within dif-
ferent brain regions.
Because of the difficulty in obtaining clinically proven

cases with pathological DLB, studies of the underlying
molecular changes in the brain are rare. Interesting pa-
thological differences have been noted – the longer the
duration of parkinsonism prior to dementia onset, the
less severe the cortical α-synuclein and β-amyloid depos-
ition as well as the cortical cholinergic deficit [71]. DLB
patients present significant cholinergic deficits [72-74]
and a decrease in serum α-synuclein [75].

Parkinson’s disease and Parkinson’s disease
dementia
In contrast to DLB, which is a dominant dementia syn-
drome, PD is a dominant movement disorder characte-
rized by the presence of two of four cardinal signs (that
is, bradykinesia, rigidity, resting tremor, gait instability)
that are responsive to levodopa therapy [76]. Current
neuropathological criteria require moderate to severe loss
of pigmented dopamine neurons in the substantia nigra
along with Lewy bodies at least in the brainstem [69].
PDD was defined in 2007 as a dementia syndrome in pa-
tients with an initial diagnosis of PD for more than 1 year
[77] and, as stated above for DLB, the cognitive symptoms
are thought to occur when Lewy bodies are prevalent in at
least limbic brain regions, but often also in association
neocortices [69]. A smaller proportion of people with
PDD have multiple pathologies [78] as observed in most
DLB cases (see above).
Changes in the phosphorylation and solubility of

α-synuclein occur prior to Lewy body formation in PD
and PDD [79-81]. In terms of solubility, the amount of
soluble α-synuclein is not substantially increased and ac-
tually decreases slightly over the course of PD [79,82].
The levels of phosphorylation of α-synuclein greatly in-
crease prior to Lewy body formation [79-81] and the
Lewy body formation correlates with an enhanced lipid
association of α-synuclein [79]. In a longitudinal study of
patients with PD it took an average 13 years for the pro-
pagation of Lewy body aggregates to reach limbic brain
regions, and 18 years before aggregates occurred in asso-
ciation cortices in 50% of PD cases [83]. These studies
show that the intracellular changes in α-synuclein take
considerable time to propagate and that posttransla-
tional modifications of α-synuclein are substantial prior
to its irreversible fibrilization.

Multiple system atrophy
MSA is a rapidly progressive neurodegenerative disease
characterized by the clinical triad of parkinsonism (simi-
lar to PD), cerebellar ataxia and autonomic failure. The
distribution of pathology classically encompasses three
functional systems in the central nervous system – the
striatonigral system, the olivopontocerebellar system and
the autonomic system – impacting on movement, muscle
control, blood pressure, heart rate and bladder function
[84,85]. Like PD and DLB, the dominant histopathology of
MSA is the presence of misfolded and fibrillar α-synuclein
in the cytoplasm. However, unlike PD and DLB, the prin-
cipal site for α-synuclein deposition is in the oligodendro-
cytes rather than neurons. Based on current information,
the sequence of pathological events in MSA is now recog-
nized as myelin dysregulation first, followed by demyelin-
ation and then neurodegeneration and loss of neurons
[86-88]; neurodegeneration therefore appears to be a sec-
ondary effect in MSA.
No causal mutations or multiplications of the coding

sequence of α-synuclein have been identified in MSA
cases [89-91], although the search is not exhaustive be-
cause MSA is a rare disease. Earlier studies, based on
small numbers of MSA cases, have reported that genetic
variants of SNCA were associated with MSA [92-94];
however, a recent pioneering genome-wide association
study of 918 MSA cases and 3,884 controls found no
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risk-conferring loci on the SNCA gene [95]. Posttransla-
tional modification studies of α-synuclein in MSA have
shown that phosphorylation and ubiquitination are im-
plicated in the deposition of α-synuclein [96], although
no definitively causative relationships have yet been es-
tablished. Furthermore, the origin of α-synuclein in oli-
godendrocytes remains stubbornly enigmatic. Although
the evidence of significant physiological expression of
α-synuclein in mature oligodendrocytes is conflicting
[97-99], it has been proposed that upregulation of the
SNCA gene in these cells could be the cause of α-
synuclein aggregation. Nevertheless, successful animal
models of MSA, which recapitulate both neuropatho-
logical and clinical features, have been generated by
overexpression of α-synuclein in the oligodendrocytes
[96,100,101]. Alternatively, aberrant uptake of α-synuclein
from the extracellular environment has also been pro-
posed as a possible mechanism of α-synuclein aggregation
in oligodendrocytes [97,102,103].

Lewy body pathology in Alzheimer’s disease
Although Lewy bodies are the pathological hallmark of
PD and DLB, recent studies suggest a considerable pro-
portion of AD brains show α-synuclein pathology. In a
recent study of 22 clinically diagnosed cases of AD, 10
were found to have α-synuclein immunoreactive Lewy
bodies by subsequent pathological examination [104].
Other studies showed that as many as one-half of pa-
tients with AD, including both sporadic and familial
cases, have α-synuclein aggregates [2,105-107]. In these
studies, α-synuclein aggregates were mostly restricted to
the amygdala, implying that the spread of α-synuclein
inclusions is different to that of PD. Lewy pathology in
AD has also been reported to be formed mainly in the
cell body of neurons, and not in the axonal terminals
and dendrites as in PD [107,108]. The Lewy pathology
therefore possibly mirrors a nonspecific end stage of
AD. However, genetic or lifestyle factors might prime
neurons to accumulate α-synuclein aggregates in a sub-
set of AD patients, and thus α-synuclein aggregates
might reflect a causal pathogenic mechanism in AD.
Several studies show that high levels of AD pathology

are often observed in patients with PD and DLB [78]
and correlate with the decline in cognitive function more
than the amount of α-synuclein aggregates [109-111].
Interestingly, PD/DLB cases with AD pathology have
higher α-synuclein levels in cortical and limbic areas
than cases without AD pathology [112], which implies
a possible interaction between α-synuclein and AD
pathology in these disorders. How the pathologies of
α-synuclein, β-amyloid and tau relate to each other in
PD and AD is poorly understood. Recent work using
a transgenic mouse model of DLB-AD provides some
clues to the interaction between β-amyloid, tau and
α-synuclein [113]. This mouse model was generated
from a cross between 3 × Tg-AD mice and mice that ex-
press the A53T mutation in α-synuclein [114]. The
DLB-AD mice exhibited accelerated cognitive decline,
compared with 3 × Tg-AD mice alone, with more severe
β-amyloid, tau and α-synuclein pathologies [113]. These
data suggest that the three pathologies interact and
somehow enhance each other, resulting in accelerated
cognitive dysfunction.

Therapeutic strategies
Because of the marked cholinergic deficit associated with
DLB (see above), cholinesterase inhibitors are routinely
used for clinical improvement [115]. In PDD these agents
have been shown to improve cognitive function, beha-
vioral disturbances and activities of daily living [115].
Their effect in DLB is less clear [115], potentially because
DLB is poorly diagnosed clinically and often has multiple
underlying pathologies (see above). Interestingly, success-
ful treatment with cholinesterase inhibitors was shown to
decrease β-amyloid deposition in a small study of DLB pa-
tients [116], suggesting that these drugs have mechanistic
as well as symptomatic effects. Considering the molecular
events surrounding α-synuclein deposition, a number of
strategies are being developed [117,118]. These strategies
include small anti-aggregating molecules and chaperones
[119-123], but perhaps the most promising strategy is the
development of antibody therapies for α-synuclein. These
therapies target extracellular α-synuclein binding the pro-
tein to reduce its self-aggregation and increase its clear-
ance, with a number of antibodies already in production
[124-127]. Another promising development is the use of
the β-lactum antibiotic ceftriaxone as a therapeutic agent
to block α-synuclein aggregation [128], although the ma-
crocyclic antibiotic rifampicin has not been successful in
MSA [129].

Conclusions
The assessment of different α-synucleinopathies focuses
on a variety of mechanisms that affect the pathogenesis
of Lewy body diseases. While all α-synucleinopathies are
characterized by α-synuclein aggregates with similar post-
translational modifications and lipid associations, the cell
type involved, their location and their association with
other protein depositions vary substantially, and recent
data suggest that perhaps the strain of α-synuclein in-
volved may also differ. An increase in α-synuclein is hy-
pothesized to precipitate the protein’s aggregation, and
this is evident in some familial forms of PD, but the pre-
cipitating events for most of the α-synucleinopathies re-
main to be determined. It is clear for Lewy body disorders
that the neuronal propagation can be slow or rapid, and is
impacted on by AD pathology; however, Lewy bodies
in AD are focused in the amygdala, suggesting that the
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initiating region of α-synuclein aggregation in the brain
can be diverse. Importantly, the concept of propagation of
α-synuclein pathology between neurons has resulted in
the development of new therapies that target this mecha-
nism with the potential to halt or slow this aspect of Lewy
body diseases.
Note: This article is part of a series on Lewy Body Dementia, edited

by Ian McKeith and James Galvin. Other articles in this series can

be found at http://alzres.com/series/LewyBodyDementia.
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