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Cerebral microbleeds: overview and implications
in cognitive impairment
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Abstract

Cerebral microbleeds (MBs) are small chronic brain hemorrhages which are likely caused by structural abnormalities
of the small vessels of the brain. Owing to the paramagnetic properties of blood degradation products, MBs can be
detected in vivo by using specific magnetic resonance imaging (MRI) sequences. Over the last decades, the implementation
of these MRI sequences in both epidemiological and clinical studies has revealed MBs as a common finding in many
different populations, including healthy individuals. Also, the topographic distribution of these MBs has been shown
to be potentially associated with specific underlying vasculopathies. However, the clinical and prognostic significance
of these small hemorrhages is still a matter of debate as well as a focus of extensive research. In this article, we aim to
review the current knowledge on the pathophysiology and clinical implications of MBs, with special emphasis on the
links between lobar MBs, cerebral amyloid angiopathy, and Alzheimer’s disease.
Introduction
Cerebral microbleeds (MBs) are small chronic brain
hemorrhages, likely caused by structural abnormalities of
the small vessels. The paramagnetic properties of blood
degradation products make possible the visualization of
MBs in vivo, using specific magnetic resonance imaging
sequences. Extensive research has demonstrated the
value of MBs as markers of small-vessel disease. Indeed,
specific topographic patterns of MBs are thought to be
representative of particular underlying vasculopathies,
mainly cerebral amyloid angiopathy and hypertensive
vasculopathy. As such, MBs are regularly identified in
individuals from stroke and memory clinics, where
they might have implications in therapeutic manage-
ment. Interestingly, MBs are also a common finding in
other populations, even in healthy elderly individuals.
The clinical and prognostic significance of MBs in all
these settings remains poorly understood. In this
review, we aim to summarize the current knowledge
on the pathophysiology and clinical implications of
MBs, with special emphasis on the links between lobar
MBs, cerebral amyloid angiopathy and Alzheimer’s
disease.
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Description and epidemiology
From a pathological point of view, MBs are tiny deposits
of blood degradation products (mainly hemosiderin)
contained within macrophages and in close spatial rela-
tionship with structurally abnormal vessels. Hemosiderin
is a strong paramagnetic material, which allows its
detection when a magnetic field is applied [1]. This
phenomenon, called susceptibility effect, is the basis of
T2*-gradient recalled echo (GRE) imaging, which led to
the definition of the current concept of radiological MBs
[2] (Figure 1). Over time, further sequences have been
developed, including three-dimensional T2*-GRE [3]
and the most sensitive one to date - susceptibility-
weighted imaging (SWI) [4]. Furthermore, the upgrade
of several MRI parameters, such as the magnetic field,
has also contributed to a more sensitive detection of
MBs [5,6]. For instance, 7-Tesla MRI detects twice as
many MBs in comparison to conventional 1.5-Tesla MRI
[7]. The downsides of these technical improvements are
the increase in the ‘blooming effect’ (larger visual
appearance of MBs on MRI than the actual size of the
hemosiderin deposit) [8] and the frequency of MB
mimics, which raises concerns about potential ‘overdetec-
tion’ of MBs and a limited clinical significance (especially
if supporting pathological data are not available). Also,
the variation of parameters causes difficulties for a
unified definition of MBs. Still, consensus guidelines on
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Figure 1 Cerebral microbleeds as seen on magnetic resonance imaging gradient-recalled echo imaging (arrows). (A) Multiple lobar
microbleeds distributed across the temporal lobes. (B) Isolated deep microbleed in the lateral aspect of the right thalamus.
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MB detection and interpretation have been published
[9]. Based on these guidelines, MBs can be described as
small areas of signal void with associated ‘blooming’,
excluding non-hemorrhagic causes of signal void. Con-
cerning MB size, a study on hemorrhage volumes in
patients with cerebral amyloid angiopathy (CAA) found
a bimodal distribution, instead of a continuum, with a
large gap between the two peaks representing MBs and
macrobleeds. This argued against setting a strict limit
for the maximum diameter of MBs; however, the study
reported a value of 5.7 mm as the best cutoff to distin-
guish between the two types of hemorrhages [10].
MBs were first reported in association with intracerebral

hemorrhage (ICH) [11]. After this initial study, reports of
MBs in ICH and other populations have dramatically
increased. As the frequency of MBs varies enormously
depending on the MRI study characteristics and the
selection of the study subjects, the reported prevalence in
different clinical conditions has considerably wide ranges:
47% to 80% in ICH [12,13], 18% to 71% [12,14] in ische-
mic stroke, or 17% to 46% in cognitive decline/dementia
[15]. However, even given the lowest estimates, it appears
that MBs are a common phenomenon across different
patient populations. On the other hand, several population-
based studies have also reported on MB prevalence in
healthy older individuals, which can be as high as 23.5%
[16]. This observation raises questions about the patho-
logical significance of MBs and the importance of MB
detection in asymptomatic individuals.

Pathological significance
Neuroimaging studies have consistently reported asso-
ciations between MB, vascular risk factors (age and
hypertension) and previously well-established markers of
small-vessel disease (SVD), such as lacunar infarcts and
white matter hyperintensities (WMHs) [17]. Also, a high
frequency of MBs in severe vascular conditions like
ischemic and hemorrhagic stroke has been noticed [17].
Taken together, these observations strongly support MBs
as an additional marker of SVD.
A few small histopathological studies have provided

insight into the vascular anomalies associated with MBs
[8,18-21]. In these studies, two main forms of vasculopa-
thies have been associated with MBs in the aging brain:
CAA and hypertensive vasculopathy (HV). CAA is
caused by the accumulation of β-amyloid on the vessel
walls of cortical and leptomeningeal arteries. HV, a con-
sequence of long-standing hypertension over the micro-
vasculature of the brain, is pathologically defined by the
presence of lipofibrohyalinosis, which affects mostly the
deep penetrating arterioles. As both entities are associ-
ated with age, they may coexist in a single individual,
with variable degrees of severity [8].
Because of the differential topographic preference of

CAA and HV, MBs associated with these two entities
could be expected to follow similar distributions: strictly
lobar (cortical-subcortical regions of brain lobes and
cerebellum) in CAA; strictly deep (deep white matter,
basal ganglia, thalamus, brainstem, cerebellum) in HV;
and mixed (lobar and deep regions) when an individual
has coexisting CAA and HV. However, there is no
definitive evidence supporting a high diagnostic value of
these MB patterns for CAA/HV. First, the aforemen-
tioned histopathological studies consisted of small series
providing very limited observations, especially regarding
lobar MBs and CAA. Second, direct extrapolations from
the Boston Criteria for the diagnosis of CAA-related
hemorrhage [22] (Table 1) seem inadequate, as they have
been validated only in subjects with lobar ICH. At
present, it is indirect evidence from population-based
studies that mostly supports the associations between
lobar/deep MBs and CAA/HV. The Rotterdam Scan
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Table 1 Boston Criteria for diagnosis of cerebral amyloid
angiopathy-related hemorrhage [22]

1. Definite CAA Full post-mortem examination demonstrating:

• Lobar, cortical, or corticosubcortical
hemorrhage

• Severe CAA with vasculopathya

• Absence of other diagnostic lesion

2. Probable CAA with
supporting pathology

Clinical data and pathologic tissue (evacuated
hematoma or cortical biopsy) demonstrating:

• Lobar, cortical, or corticosubcortical
hemorrhage

• Some degree of CAA in specimen

• Absence of other diagnostic lesion

3. Probable CAA Clinical data and magnetic resonance
imaging (MRI) or computed tomography (CT)
demonstrating:

• Multiple hemorrhages restricted to lobar,
cortical, or corticosubcortical regions
(cerebellar hemorrhage allowed)

• Age >55 years

• Absence of other cause of hemorrhageb

4. Possible CAA Clinical data and MRI or CT demonstrating:

• Single lobar, cortical, or corticosubcortical
hemorrhage

• Age >55 years

• Absence of other cause of hemorrhageb

Criteria were established by the Boston Cerebral Amyloid Angiopathy Group:
Steven M Greenberg, Daniel S Kanter, Carlos S Kase and Michael S Pessin. aAs
defined in [26]. bOther causes of intracerebral hemorrhage were excessive
warfarin (international normalized ratio (INR).3.0); antecedent head trauma or
ischemic stroke; central nervous system tumor, vascular malformation, or
vasculitis; and blood dyscrasia or coagulopathy. (INR.3.0 or other non-specific
laboratory abnormalities are permitted for diagnosis of possible cerebral
amyloid angiopathy).
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Study [16] reported that healthy older individuals with
strictly lobar MBs have an exceedingly high frequency of
the apolipoprotein E-ε4 (APOE-ε4) allele (compared
with patients with MBs not strictly confined to lobar
regions), which is in agreement with increased APOE-ε4
frequencies seen in patients with ‘probable CAA’. In
contrast, strictly deep MBs were associated with vascular
risk factors, lacunar infarcts, and WMH, but not with
the APOE-ε4 allele. Associations of mixed MBs resem-
bled the profile of strictly deep MBs. In a subsequent
study based on the same population, lobar MBs were
seen to occur significantly more often in the temporal
lobe [23], one of the regions severely affected by CAA.
There still exists another line of investigation providing
support to the link between lobar MB and CAA, and it
consists of the study of CAA patients with both MRI
and Pittsburgh compound B (PiB)-positron emission
tomography (PET) imaging. With this combined ap-
proach, a close spatial relationship between MBs and
vascular amyloid load was found in a cross-sectional
study [24]. Further supporting this observation, PiB re-
tention was shown to rapidly decrease with increasing
distance from the MB site [24]. In a later study on a
smaller cohort with longitudinal data, the investigators
concluded that high-load amyloid areas are a preferential
site for development of incidental lobar hemorrhages
[25]. Neuroimaging-pathological correlation studies are
needed to confirm these associations.

Clinical implications
Direct pathological observations have demonstrated the
existence of tissue damage surrounding MBs [7,15-17].
On a less direct level, diffusion tensor imaging studies
have shown an independent association between the
presence of MBs and a higher degree of microstructural
injury of the brain [27,28]. These phenomena provide a
scientific basis to support direct clinical effects of MBs,
beyond their associations with particular vasculopathies.
Although the underlying mechanism is still a matter of

debate, several clinical reports suggest that MBs might
cause acute transient focal neurological episodes
(TFNEs) [29,30]. Clinically, these episodes may resemble
transient ischemic attack (TIA) or seizures, depending
on the negative or positive character of the symptoms.
Pathogenesis might involve direct damage to cells/tracts,
but electrical disturbances associated with the leakage of
blood components may have a more significant role. In
fact, experimental studies have shown that MBs may
transiently affect the function of the nearby cells because
of an inhibition of stimulus-evoked calcium responses
[31]. Recent studies are pointing more toward superficial
cortical siderosis, instead of MBs, as the main CAA
feature associated with TFNE. Regardless of the exact
type of lesion involved, the investigation for evidence of
chronic hemorrhages in TIA seems crucial, as the simple
initiation of anti-thrombotic therapy could have undesir-
able effects in cases with TFNE.
The cautious approach to anti-thrombotic therapy in

patients with these symptomatic episodes can be extended
to all patients exhibiting MBs. From a pathophysiological
standpoint, MBs appear to be the expression of a
hemorrhage-prone state of the brain, which might carry
a greater risk of ICH. In the literature, the risk/benefit
ratio of anti-thrombotic drugs in individuals with MBs
is controversial, and no formal contraindications in this
respect exist. Still, some data support the presence of
MBs as an independent risk factor for warfarin-related
ICH [32]. Even anti-platelet agents, traditionally safer
than anti-coagulants, have been associated with an
increased risk of ICH, especially in subjects with a high
number of MBs [33,34]. Given these observations, it
seems reasonable to individualize decisions on anti-
thrombotic therapy in patients with MBs.
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A few longitudinal studies have investigated the
progression of MBs over time, revealing that MBs at
baseline are a risk factor for the development of new
MBs [35-37]. According to a follow-up report from the
Rotterdam Scan Study, incident lobar and deep MBs
have different risk factors [35], similar to what had been
observed with baseline MBs [16]. The importance of
cumulative MB burden is double: first, it may produce
further widespread damage over brain structures; and,
second, it highlights the progression of the underlying
SVD. These two factors may explain the impact of base-
line identification of MBs on future neurological events
and mortality. In a study of individuals with lobar ICH, a
higher number of lobar hemorrhages at baseline (includ-
ing MBs) predicted an increased risk of not only lobar
ICH recurrence but also cognitive decline, functional
dependence, or death in those individuals not dependent
or demented by the time of admission [38]. Mortality
was also strongly predicted by MBs (especially when
multiple) in another study following patients in a large
memory clinic cohort [39]. When specific causes of
death according to MB distribution were investigated in
a population-based cohort of older people at high risk of
cardiovascular disease, deep MBs were associated with
cardiovascular mortality, whereas lobar MBs were asso-
ciated with stroke-related mortality [40]. These findings
fit well with the notion of lobar and deep MBs associ-
ated with HV and CAA, respectively. Since HV is
secondary to a systemic process (hypertension), high
cardiovascular mortality is expected in the context;
however, CAA is a primary brain vasculopathy, with no
extracerebral manifestations.
Apart from ICH, the other main neurological

outcomes that have been associated with MBs are gait
disturbances [41,42] and cognitive impairment [43].
Cognitive impairment (and dementia) represents an
increasing source of severe long-term disability and will
be the focus of the review in the next sections.

Microbleed and cognitive impairment
One of the initial studies assessing the cognitive impact
of MBs compared the performance on multiple cognitive
domains between patients with and without MBs from a
neurovascular clinic [44]. The two subgroups were
matched for age, gender, intelligence quotient, extent of
WMH, and type and location of ischemic stroke. Indi-
viduals with MBs had a much higher prevalence of
executive dysfunction than those without MBs (60%
versus 30%, P = 0.03). In logistic regression analyses, the
presence of MBs was the only independent predictor of
executive dysfunction. Interestingly, in individuals with
executive dysfunction, MBs were predominantly located
in the frontal lobes and basal ganglia, areas classically
considered the neuroanatomical substrate for executive
function. These results suggested that (a) MBs may actu-
ally have a negative effect on cognition, independently of
other concurrent vascular lesions, and (b) there seems to
be an anatomical correlation between the distribution of
MBs and the cognitive domains affected, suggesting a
direct damage of MBs over the tissue as the pathogenic
mechanism. Later studies have confirmed and expanded
these findings, using different study populations with
different MB patterns. Seo and colleagues [45] investi-
gated the independent effect of MBs in multiple domains
in a cohort of individuals with diagnosed subcortical vas-
cular dementia. MBs were predictive not only of execu-
tive dysfunction but also of memory, language, and
visuospatial impairment. MBs were distributed mostly in
the cortical areas, predominantly in the fronto-temporal
lobes, and this might suggest a high prevalence of CAA
in this cohort. Again, this predominant MB location
matched well with the impaired cognitive areas. In the
context of Alzheimer’s disease (AD), several studies have
also explored the relationship between MBs and cogni-
tion. We discuss this complex interplay between lobar
MBs, AD, and CAA in detail below.
Both the Age, Gene/Environment Susceptibility

(AGES)-Reykjavik study and the Rotterdam Scan Study
have reported on MBs and cognitive performance in
their respective population-based cohorts. The AGES
study (n = 3,906) [46] showed that the presence of MB,
especially multiple MBs, is associated with worse pro-
cessing speed and executive function. These results were
stronger in subjects with strictly deep MBs. It was also
seen that the combination of multiple MBs and retinop-
athy increased the odds ratio of vascular dementia: 3.10;
95% confidence interval (CI) 1.11 to 8.62 [46]. Taken
together, these data firmly provide support that micro-
vascular damage plays a key role in cognitive impair-
ment in older individuals living in the community.
Whereas the AGES study confirmed in community-
dwelling individuals the suggested link between deep
MBs and subcortical cognitive deficits, the Rotterdam
Scan Study emphasized the negative effects of lobar
MBs on a wider spectrum of cognitive domains [43]. In
this study of 3,979 participants, multiple MBs (at least
five) were associated with worse cognitive performances
in all domains but memory. However, these associations
were more robust in individuals with strictly lobar MBs
(all analyses adjusted for age, sex, education, vascular
risk factors, other SVD markers, and brain atrophy).
Differences in baseline characteristics between these two
population-based cohorts may explain why deep or lobar
location of MBs appears to be more prominent.
In general, the available literature provides support

that MBs are independent contributors to cognitive
impairment and that their topographic distribution
may have specific associations with certain cognitive
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domains. As stated, direct tissue damage or underlying
SVD (or both) may account for these detrimental effects.

Lobar microbleed, cerebral amyloid angiopathy, and
Alzheimer’s disease
MBs have extraordinary importance in the context of
AD. Apart from offering hints on AD pathophysiology,
their presence may modify the course of the disease and
even the response to new immunotherapeutic agents.
The frequency of MBs in subjects with AD varies

significantly across studies (16% to 32%) [15,47-50], with
a pooled proportion of 23% (95% CI 17% to 31%) [51].
Despite this high variability, MB overall prevalence is
consistently higher in subjects with AD than in non-
demented, older individuals [15,50]. Indeed, a recent
study using high-field MRI found an MB prevalence as
high as 78% in patients with early AD [7]. Although
deep MBs may be identified in some AD cases, the vast
majority of them (92%) show a lobar predominance. As
pointed out in population-based studies, lobar MBs are
not associated with classic vascular risk factors and show
weak associations with other classic SVD markers.
Because CAA is present in up to 90% of AD cases [52],
it may be conceptually feasible to state that lobar MBs
are reliable markers of CAA in patients with AD. The
‘amyloid cascade’ hypothesis [53], in combination with
further theories on amyloid clearance through perivascu-
lar spaces [54], supports this notion. However, it is im-
portant to note that only a small proportion of AD cases
(23%) actually exhibit lobar MBs [51]. There are several
ways to explain this dissociation between the post-
mortem pathological findings of CAA and MB detection
during life. First, lobar MBs may appear only in cases
with advanced CAA, and advanced CAA accounts for
only around 25% of individuals with dementia [55]. Also,
CAA is often reported in autopsies, which by definition
reflect end-stage disease, whereas MB imaging is per-
formed mostly in earlier stages of the disease. Third, the
implementation of more sensitive MRI sequences for
MB detection will probably increase the proportion of
AD patients with lobar MBs.
Despite this, there is a possibility that AD patients

with lobar MBs represent a subgroup with distinct char-
acteristics. This concept has been studied by comparing
the cognitive profile, the rate of cognitive decline over
time, and the mortality rates between MB and non-MB
subjects with AD. Two early studies failed to demon-
strate any influence of MBs on cognitive performance in
AD cohorts [47,49]. The main limitation of these studies
was the use of the Mini-Mental State Examination
(MMSE) as the main cognitive outcome measure.
Indeed, global cognitive tests (like MMSE) may not
capture impairment in certain domains such as execu-
tive function. However, a larger study using specific
neuropsychological assessments did not find any rela-
tionship between MBs and worse cognitive performance
[50]. In this case, low MB counts may have prevented
this study from identifying associations. More recently,
another study overcame this issue by comparing mul-
tiple MB cases with non-MB cases within an AD cohort.
This study showed that AD subjects with multiple MBs
had a more severe cognitive impairment (independently
of disease duration) and degree of atrophy and WMH
[56]. Two studies investigated the value of MBs in pre-
dicting progression from mild cognitive impairment to
dementia. One of these studies found that the presence
of at least one MB yielded a more than twofold increase,
but not a significant risk of non-AD dementia [57]. In
the other study, MBs detected on SWI sequences were
found to predict cognitive decline in patients followed
up to 5 years [58]. Although data are very limited, it is
conceivable that lobar MBs could predict progression to
AD-type dementia but that deep MBs could anticipate
the future development of vascular dementia. In terms
of mortality, a study showed that the presence of MBs at
baseline in patients from a memory clinic was associated
with an increased risk of death, in a dose-dependent
fashion and independently of other SVD markers and
vascular comorbidity [39]. A later study on the same co-
hort reported that MBs were not associated with a faster
rate of cognitive decline, suggesting that the increase in
mortality may be related to other clinical events, like
ICH [59].
Finally, MBs may have some impact on current immuno-

therapies for AD. An early trial of active immunization
reported some cases of severe meningoencephalitis, which
prompted its termination [60]. The pathologic study of one
of these cases [61] suggested that an inflammatory reaction
had been triggered by the immunization agent and targeted
β-amyloid, both in tissue plaques and vessels [62]. Conse-
quently, the presence of advanced CAA has been estab-
lished as a potential risk factor for developing undesirable
brain inflammation in AD immunotherapy. Since lobar
MBs in the context of AD are interpreted as markers of
advanced CAA, lobar MB carriers (especially those with
multiple MBs) are currently excluded from immunization
trials as a safety measure [63]. Although this seems to be
a reasonable approach, the precise correlation between
MB burden and CAA presence (and severity) is still
unknown.

Conclusions
MBs are SVD markers that carry diagnostic and prog-
nostic information for individuals in various clinical set-
tings. Although our knowledge on MB pathophysiology
and clinical implications has increased substantially
in the last decades, important questions remain un-
answered. The implementation of more sensitive MRI
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techniques for the detection of MBs, and their systematic
assessment along with other imaging markers (including
PET-based amyloid imaging [24]) and blood biomarkers,
may provide a useful tool in the future to guide thera-
peutic decisions and better define subjects in a research
context.
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