Skip to main content
Fig. 3 | Alzheimer's Research & Therapy

Fig. 3

From: Lack of human-like extracellular sortilin neuropathology in transgenic Alzheimer’s disease model mice and macaques

Fig. 3

Representative light microscopic images illustrating a lack of extracellular sortilin pathology in transgenic mouse forebrain, regardless of brain region and presence of β-amyloid (Aβ) and tau pathologies. Sortilin immunolabeling visualized with the rabbit antibody is shown in the left panels from the amyloid precursor protein and presenilin 1 double-transgenic (APP/PS1), five familial Alzheimer’s disease mutations transgenic (5×FAD), and triple-transgenic Alzheimer’s disease (3×Tg-AD) mice at the indicated ages (a, d, g), as well as from two human cases with Alzheimer’s disease (AD) (j, k). Aβ immunolabeling in adjacent sections is visualized with the 6E10 antibody, arranged as the middle panels correspondingly (b, e, h, l, m). The right panels show immunoreactivity displayed with the PHF1 mouse anti-phosphorylated tau (p-tau) antibody from another set of neighboring sections from the cases (c, f, i, n, o). Boxed areas are enlarged as insets in the panels as indicated. Different from the human cortex as pathological positive control (j, k), there is no plaque-like sortilin labeling seen in the transgenic mouse sections, whereas neuronal labeling is seen in the cortex and hippocampal formation (a, d, g, insets). Extracellular Aβ deposition is clearly present in the transgenic mouse cortex and hippocampal formation (b, e, h) as well as in the human cortex (l, m). p-Tau immunolabeling is background-like in the APP/PS1 and 5×FAD sections (c, f), whereas in the 3×Tg-AD mouse section, pyramidal neurons in the subiculum and CA1 area are clearly labeled (i, insets). In the human cortex, p-tau immunolabeling is seen in neuronal somata and processes as well as at neuritic plaques (n, o). Abbreviations are as defined in Fig. 1 legend, as well as the following: Ctx Cortex, PMD Postmortem delay in hours, WM White matter. Scale bar = 1 mm in (a) applying to (b, c), equivalent to 500 μm for (di) and 250 μm for (jo)

Back to article page