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Abstract 

Background  Recently, single-nucleus RNA-seq (snRNA-seq) analyses have revealed important cellular and functional 
features of Alzheimer’s disease (AD), a prevalent neurodegenerative disease. However, our knowledge regarding inter-
cellular communication mediated by dysregulated ligand-receptor (LR) interactions remains very limited in AD brains.

Methods  We systematically assessed the intercellular communication networks by using a discovery snRNA-seq 
dataset comprising 69,499 nuclei from 48 human postmortem prefrontal cortex (PFC) samples. We replicated the find-
ings using an independent snRNA-seq dataset of 56,440 nuclei from 18 PFC samples. By integrating genetic signals 
from AD genome-wide association studies (GWAS) summary statistics and whole genome sequencing (WGS) data, 
we prioritized AD-associated Gene Ontology (GO) terms containing dysregulated LR interactions. We further explored 
drug repurposing for the prioritized LR pairs using the Therapeutic Targets Database.

Results  We identified 190 dysregulated LR interactions across six major cell types in AD PFC, of which 107 pairs were 
replicated. Among the replicated LR signals, we found globally downregulated communications in the astrocytes-to-
neurons signaling axis, characterized, for instance, by the downregulation of APOE-related and Calmodulin (CALM)-
related LR interactions and their potential regulatory connections to target genes. Pathway analyses revealed 44 
GO terms significantly linked to AD, highlighting Biological Processes such as ‘amyloid precursor protein processing’ 
and ‘ion transmembrane transport,’ among others. We prioritized several drug repurposing candidates, such as cro-
moglicate, targeting the identified dysregulated LR pairs.

Conclusions  Our integrative analysis identified key dysregulated LR interactions in a cell type-specific manner 
and the associated GO terms in AD, offering novel insights into potential therapeutic targets involved in disrupted 
cell–cell communication in AD.
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Background
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disease that affects over 32 million individuals 
worldwide, resulting in substantial societal and economic 
burden [1]. AD is characterized by extracellular deposits 
of β-amyloid and intraneuronal accumulation of neurofi-
brillary tangles, ultimately resulting in neuronal death 
[2]. Despite extensive research, with the exception of the 
amyloid deposition mechanism, the molecular and cel-
lular mechanisms underlying AD remain elusive, which 
translates into limited effective therapies.

A delicate balance of intercellular communications 
among non-neuronal and neuronal cells is essential for 
maintaining tissue homeostasis and normal brain func-
tions such as synaptic pruning and synaptogenesis [3–5]. 
Experimental and genetic evidence implicates the aber-
rant activation of microglia and astrocytes as contrib-
uting factors in the pathogenesis of neurodegenerative 
diseases. These activated cells exert downstream effects 
on neurons, further implicating them in diseases includ-
ing AD [6–8]. Recent studies have leveraged single-
nucleus RNA sequencing (snRNA-seq) data [9–11] and 
intercellular communication analysis tools [12, 13] to 
identify complex intercellular communication within 
the postmortem AD brains [14–16]. Most findings sug-
gested that microglia might contribute to AD’s pathogen-
esis through ligand-receptor (LR) axis communication 
alterations [14–16]. For instance, it has been proposed 
that the amyloid-β peptides that bind to the receptor for 
advanced glycation end products could lead to upregula-
tion of the chromogranin A gene, triggering neurotoxin 
production and inflammation in AD [8]. Another study 
has pointed to the activation of SEMA6D-TREM2 inter-
action in proximity to Aβ plaques, inducing microglial 
activation in AD [15]. Nevertheless, the disrupted inter-
actions between astrocytes and neurons remain largely 
unexplored. Hence, a more thorough intercellular com-
munication analysis using snRNA-seq data is crucial for 
deeper insights into the interplay between non-neuronal 
and neuronal cells in AD.

Understanding the biological relevance of dysregulated 
intercellular signals in AD requires a comprehensive 
assessment of their associated pathways [4]. An inte-
grative analysis framework incorporating genetic vari-
ant data could enhance our understanding of biological 
pathways involving dysregulated communication signals 
in AD. Researchers have gained insight into atheroscle-
rosis-associated biological mechanisms through snRNA-
seq data-guided pathway-level polygenic scores (PGSs) 
analysis by integrating genome-wide association studies 
(GWASs) statistics and genotyping data [17]. However, 
this integrative approach has not yet been applied to AD 
snRNA-seq data. While previous snRNA-seq studies 

have mapped AD GWAS risk loci [18–21] to AD-asso-
ciated genes and open chromatin regions of microglia, 
astrocytes, and oligodendrocytes [11, 22, 23], a more 
systematic integrative analysis is necessary to unveil the 
complex connections between genetic variants and spe-
cific pathways encompassing dysregulated communica-
tion signals in AD.

To address this gap, we engineered a comprehensive 
integrative analysis framework to reconstruct the dysreg-
ulated intercellular communication network and identify 
their underlying biological functions in AD. Specifically, 
we collected two human prefrontal cortex (PFC) snRNA-
seq datasets from AD individuals and healthy controls of 
two independent cohorts, used as discovery and replica-
tion datasets [9, 11]. Through a systematic comparative 
intercellular communication analysis, we identified dys-
regulated LR pairs and their potential target genes across 
six major cell types, namely astrocytes, excitatory neu-
rons, inhibitory neurons, microglia, oligodendrocytes, 
and oligodendrocyte precursor cells (OPCs). Secondly, 
we conducted pathway-level analyses, leveraging GWAS 
statistics and genotyping data of AD participants and 
healthy controls, to prioritize biological pathways con-
taining dysregulated communication signals. Lastly, our 
drug repurposing analysis, utilizing publicly available 
databases, revealed known and novel repurposable drugs 
for AD treatment. This study provides novel insights into 
the complex intercellular communication in AD post-
mortem brains, suggesting potential molecular mecha-
nisms and therapeutic strategies for AD.

Methods
snRNA‑seq data for AD
We collected two snRNA-seq datasets for AD research, 
one for discovery and the other for replication. The dis-
covery dataset comprised postmortem human brain sam-
ples from 48 participants, sourced from The Religious 
Orders Study and Memory and Aging Project (ROS-
MAP) cohort. This dataset included 24 AD samples and 
24 sex/age of death-matched control samples. The clas-
sification of AD and controls  was determined based on 
pathological hallmarks of AD, including β-amyloid bur-
den, neuritic plaque burden, and global AD-pathology 
burden [9]. Droplet-based snRNA-seq data were gener-
ated from the PFC region of these 48 samples, resulting 
in transcriptome profiles for 80,660 single nuclei [9]. 
The count matrix, mapped by using Cell Ranger (v.2.0.0, 
GRCh38.p5 reference genome), was downloaded from 
the AD Knowledge Portal [24].

The independent replication dataset consists of post-
mortem human brain samples from 11 AD participants 
and 7 healthy controls, all from the University of Cali-
fornia Irvine Institute for Memory Impairments and 
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Neurological Disorders (UCI MIND) Alzheimer’s Dis-
ease Research Center (ADRC) [11]. The diagnosis of AD 
was defined based on the Braak and plaque staging [11]. 
The snRNA-seq data were generated from 61,472 iso-
lated nuclei from the PFC region of these 18 individu-
als. We retrieved the data from the National Center for 
Biotechnology Information Gene Expression Omnibus 
(GSE174367).

snRNA‑seq data quality control and annotation
The integrative analysis framework is depicted in Fig. 1. 
We implemented universal preprocessing and quality 
control procedures for both the discovery and replica-
tion snRNA-seq datasets, starting from the count matrix, 
using the standard Seurat pipelines (v.4.3.0) [25]. Specifi-
cally, we retained cells containing between 200 and 6000 
features, with mitochondrial reads constituting less than 
5% of the total reads. We then applied the standard log-
normalization workflow to the gene expression matrix 
via the NormalizeData function in Seurat. Dimensional-
ity reduction was executed using the Uniform Manifold 
Approximation and Projection technique, and visual 
representation was confined to the initial two dimen-
sions. We assigned cellular labels to eight major cell 
types in the brain, namely astrocytes, endothelial cells, 
excitatory neurons, inhibitory neurons, microglia, oligo-
dendrocytes, OPCs, and pericytes, based on statistical 

enrichment of marker gene sets as delineated in the origi-
nal publication [11, 25]. Endothelial cells and pericytes 
were excluded from the analysis due to their low cell 
count in both datasets.

Intercellular communication analysis
To assess dysregulated intercellular communication sig-
nals among various cell types in the snRNA-seq data-
set, we employed CellChat (version 1.6.0, last update on 
November 12, 2022). This approach allowed us to identify 
context-specific signaling through joint manifold learning 
and quantitative comparisons of multiple cell–cell com-
munication networks [12]. Our analysis was based on a 
consensus ligand-receptor (LR) dataset by Dimitrov et al. 
[13]. The consensus LR dataset contained 4701 LR pairs 
compiled from 16 intercellular communication inference 
resources [13].

We followed the comparison analysis pipeline of Cell-
Chat to identify dysregulated intercellular signaling in 
AD and controls. The comparison analysis requires the 
same cell type compositions between two conditions. We 
performed a compositional analysis of single-cell data 
analysis using scCODA [26]. We found no significant dif-
ference in cell type compositions between the AD and 
control samples in either the discovery or the replication 
dataset (Additional file 1: Fig. S1e, f ). Then, the intercel-
lular communication probability of each LR pair between 

Fig. 1  Study workflow. a Identification of altered cell type-specific ligand-receptor (LR) pairs through systematic comparative cell–cell 
communication analysis in single nuclei RNA sequencing data of Alzheimer’s disease (AD) individuals and controls in the discovery and replication 
datasets. b Prioritization of altered cell type-specific LR pairs through pathway analyses by integrating genome-wide association studies (GWAS) 
summary statistics and whole genome sequencing (WGS) data
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two cell populations within each condition (AD and con-
trol) was separately modeled and calculated. This calcu-
lation integrated the ensemble average gene expression 
per cell group and the consensus LR dataset, using the 
computeCommunProb function using the default param-
eters (type = “trimean”). Permutation tests were used to 
recognize statistically significant intercellular communi-
cations. To identify up- and downregulated signaling LR 
pairs in AD, we used the netVisual_bubble function with 
the default parameters. An LR interaction between two 
cell types was considered to be context-specific if it had 
permutation test p-value < 0.05 under the correspond-
ing condition and it exhibited different communication 
probabilities compared to the alternate condition. Fur-
ther filtering of identified interactions was based on the 
differential gene expression profile (between AD and 
controls) of sender and receiver cell types. Interactions 
were retained only if (1) the ligand and receptor genes 
were expressed in more than 10% of sender and receiver 
cells and (2) the gene expression of ligands met an abso-
lute log2 fold change > 0.1 with an adjusted p-value < 0.05.

Intracellular target genes analysis of dysregulated 
intercellular communication signals
We extended our analysis by applying the NicheNet tool 
[27] to assess the regulatory potential of dysregulated 
intercellular signals, as identified in CellChat compari-
son analysis, on their potential target genes within the 
receiver cells. For each sender-receiver cell type analysis, 
we focused on the ligands involved in the dysregulated LR 
interactions identified in our previous CellChat compari-
son analysis. Additionally, we considered differentially 
expressed genes (DEGs) in AD versus  controls  within 
each receiver cell population as the potential target genes 
of interest for the NicheNet analysis. Furthermore, we 
utilized a ligand-to-target model from NicheNet [27], 
which encapsulated prior knowledge regarding the regu-
latory potential between specific ligands and their impact 
on the expression of target genes.

We identified the DEGs in each receiver cell population 
using the FindMarkers function in the Seurat package 
with default parameters in the discovery and replication 
datasets separately. Additionally, sex, age of death, and 
number of features were included as covariates in the dif-
ferential analysis. The DEGs were filtered based on the 
Bonferroni adjusted p-value < 0.05 using all genes in the 
datasets [28].

Following the NicheNet pipeline, we used the pre-
dict_ligand_activities function to calculate the ligand 
activity, which is based on the enrichment of their pre-
dicted target genes in the set of genes that are differen-
tially expressed in the receiver cell. The area under the 
precision-recall curve (AUPR) was calculated and used 

to prioritize the ligands. Regulatory potential scores were 
then calculated between prioritized ligands and poten-
tial targeted genes within receiver cells using the default 
parameters. Active ligand-target connections were visu-
alized if their regulatory potential score exceeded the 
25% quantile of scores of interactions between prioritized 
ligands and their top targets. Genes expressed in over 
10% of receiver cells were considered background genes.

In addition, we utilized the ClusterProfiler R package 
(version 4.2.2) for over-representation analysis to find 
enriched Gene Ontology (GO) Biological Processes (BP) 
[29]. Specifically, the identified genes in the dysregu-
lated LR interaction in specific sender and receiver cell 
types, as well as the inferred intracellular target genes, 
were used as the query gene list. In the context of the cell 
type-specific analysis, we defined our background gene 
set to encompass all ligand and receptor genes from the 
consensus LR dataset that were expressed in the relevant 
cell types, as well as genes that were expressed in either 
the sender or receiver cells. We characterized “expressed 
genes” as those that were observed in more than 10% 
of cells in either the sender or receiver cell types. The 
enriched terms were filtered using a Benjamini–Hoch-
berg adjusted p-value < 0.05 [30].

Gene Ontology (GO) terms filtration
To examine the biological relevance of dysregulated inter-
cellular signals in AD, we conducted pathway enrichment 
analysis of the genes in the dysregulated LR interactions 
identified in the intercellular communication analyses in 
both discovery and replication datasets. We used 10,532 
GO terms from three domains, including biological pro-
cesses (BP), molecular functions (MF), and cellular com-
ponents (CC), from the Molecular Signatures Database 
(version 2023.1.Hs, accessed on March 6th, 2023) [31]. 
We limited the GO terms to 25 to 500 genes to filter 
small or large gene sets. Only the GO terms containing 
at least one dysregulated LR gene pair, including both 
ligand and receptor genes, as identified in the preceding 
analytical step, were retained as the candidate GO terms 
for further investigation.

Pathway enrichment analysis using GWAS summary 
statistics
We implemented the GWAS statistic fine-mapping tool, 
MAGMA, to detect AD-associated pathways encompass-
ing the replicated dysregulated LR interactions (Fig. 1b) 
[32]. In the past decade, more than six AD GWASs were 
published [18–21, 33, 34]. These studies included shared 
and distinct participants, allowing for the characteriza-
tion of new genetic risk factors associated with AD. In 
our analysis, we used the summary statistic data from a 
meta-analysis GWAS performed by Wightman et al. [20], 
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including 398,058 individuals (39,918 clinically diagnosed 
AD cases and 358,140 controls) of European descent, 
with proxy cases from the UK BioBank and 23andMe 
excluded [20].

Following the standard pipeline, we first employed the 
MAGMA tool to evaluate gene-level significance using 
the collected AD GWAS summary statistics [20]. A gene 
annotation with a 35  kb window upstream and a 10  kb 
window downstream was used for the MAGMA gene 
analyses. Subsequently, we conducted the pathway anal-
ysis employing MAGMA to identify AD-associated GO 
terms containing replicated dysregulated LR interactions 
[32]. The final results were filtered using a Benjamini–
Hochberg adjusted p-value < 0.05 [30].

Pathway‑based polygenic scores analysis using WGS data
We utilized PRSet, a recently released pathway-based 
polygenic scores (PGSs) analysis tool, to further evaluate 
the potential association of GO terms with AD, focusing 
on those terms encompassing replicated dysregulated 
LR interactions [35]. Briefly, the PRSet method employs 
a classical clumping + thresholding (C + T) technique to 
calculate pathway-specific PGSs in relation to selected 
GO terms for individuals with genotyping data. Single-
nucleotide polymorphisms (SNPs) falling within regions 
of interest are preferentially retained for each linkage 
disequilibrium clump of SNPs, with a clumping distance 
of 500  kb to either side of the index SNP and an LD r2 
threshold > 0.2.

The identical AD GWAS summary statistics from the 
MAGMA analysis and the gene coordinates of each 
gene were used as the base data in the PRSet analysis 
[20]. In addition, a WGS dataset of 1894 individuals of 
AD individuals and controls, downloaded from the AD 
Knowledge Portal, was used for pathway-specific PGSs 
evaluation [24, 36]. The WGS dataset includes partici-
pants from three large cohorts: 1200 individuals from 
ROSMAP [37], 354 from the Mount Sinai Brain Bank 
[38], and 350 from the Mayo Clinic [39]. The original 
WGS data were aligned to the human reference GRCh37 
and processed using the GATK best practices workflow 
[36]. The dataset was subsequently refined based on race, 
resulting in 1746 individuals of European descent for the 
analysis.

The performance of the generated PGS for each GO 
term was initially determined through a generalized lin-
ear model. The covariates used in the model were sex, age 
at death, the number of APOE4 alleles, and the first ten 
principal components. We used PRSet competitive p-val-
ues calculation, based on permutation test, to assess sig-
nal enrichment compared to identically clumped SNPs in 
regions of the genome considered background (all genes). 

A pathway PGS with competitive p-values ≤ 0.05 was 
considered significantly enriched in AD.

Drug repurposing analysis 
Based on the drug target analysis strategies from our pre-
vious work [40], we identified drugs that could potentially 
be repurposed to target genes involved in dysregulated 
LR interactions in AD. Here, we employed the Therapeu-
tic Target Database to obtain information on drugs and 
their corresponding investigational, literature-curated, 
and FDA-approved targets [41]. We then prioritized can-
didate repurposing drugs and compounds based on their 
ability to cross the blood–brain barrier (BBB) based on 
existing literature [41, 42].

Results
Identification of dysregulated intercellular networks in AD
The integrative analysis framework is depicted in Fig. 1. 
To systematically examine the intercellular communica-
tion signals in healthy controls and AD individuals, we 
analyzed two snRNA-seq datasets of postmortem PFC 
samples [9, 11], utilizing one for discovery and the other 
for replication, as stated in the “Methods” section. The 
discovery dataset was derived from postmortem PFC 
samples of 24 AD participants and 24 age of death and 
sex-matched controls from the ROSMAP cohort [9]. The 
replication dataset was derived from postmortem PFC 
tissue from 11 AD participants and seven age of death-
matched controls from UCI MIND-ADRC [11]. After 
performing universal preprocessing and quality control 
procedures, we analyzed 69,499 nuclei from the discov-
ery dataset and 56,440 nuclei from the replication data-
set, corresponding to six major brain cell types, namely 
astrocytes, excitatory and inhibitory neurons, microglia, 
oligodendrocytes, and OPCs (Additional file  1: Fig. S1). 
Using CellChat v.1.6.0 [12], we identified intercellular 
communication signals based on a LR dataset containing 
4701 consensus LR pairs compiled from 16 intercellu-
lar communication inference resources [13]. Our analy-
sis followed the standard comparison analysis pipeline, 
wherein we separately inferred intercellular communica-
tion signals for AD and control samples. Subsequently, 
we conducted an integrative comparison analysis to dis-
cern the differences in cell–cell communication signals 
between the two conditions.

In the discovery dataset, we identified 987 and 1211 
LR interactions (permutation p-value < 0.05) across cell 
type pairs in AD and controls (Fig. 2a). Among these LR 
interactions, 934 LR interaction pairs were consistently 
inferred in both AD and control samples, as depicted 
in Additional file  1: Fig. S2a. Notably, we found 53 LR 
interactions that were significantly inferred solely in the 
AD samples and an additional 277 LR interactions that 
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exhibited exclusive significance in the control samples 
within the discovery dataset. For instance, we observed 
the LR interaction A2M-LRP1, which originated from 
microglia and targeted astrocytes, to be exclusively sig-
nificant in the AD group, as indicated by a permutation 

p-value < 0.05. Moreover, we found a decrease in inter-
action strength within the AD group (64.804) versus in 
controls (76.541), which was computed by summing the 
communication probabilities of all inferred LR pairs in 
each condition (Fig.  2a). This suggests a general decline 

Fig. 2  Comparative analysis of cell–cell communication signals between Alzheimer’s disease (AD) and controls. a The total number of inferred 
interaction signals and total interaction strength in AD (red) and controls (blue). b Number of inferred upregulated and downregulated interaction 
signals across cell types in Alzheimer’s disease (AD) and controls in the discovery dataset. c Highlighted dysregulated ligand-receptor (LR) pairs 
across major cell types in AD. The bolded LR pairs were replicated in the independent replication dataset using the identical analysis workflow. The 
stared LR pairs were identified with different communication probabilities in the independent replication dataset, but with opposite directions. d 
Venn diagram of the number of dysregulated LR pairs identified in the discovery and replication datasets. Ast astrocyte, Ex excitatory neuron, In 
inhibitory neuron, Mic microglia, Oli oligodendrocyte, OPC oligodendrocyte precursor cell
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in intercellular communication in AD. Focusing on cell-
type-specific communication alterations, we found that 
both outgoing and incoming intercellular communica-
tion signals in excitatory and inhibitory neurons exhib-
ited decreases in both quantity and strength in AD 
samples (Additional file 1: Fig. S2b). In non-neuronal cell 
types, astrocytes, microglia, and OPCs showed decreased 
incoming and outgoing communications connecting with 
neuronal cell types (Additional file 1: Fig. S2b).

Non‑neuronal cell type mediated dysregulation in LR 
interactions revealed neuroinflammation and calcium 
dyshomeostasis in AD
Our investigation delved into the alterations in each LR 
gene pair, aiming to find the dysregulated LR interactions 
that may be driving the intercellular communication dis-
ruption in AD. In total, we identified 190 dysregulated LR 
interactions across six major brain cell types (Fig. 2b, c, 
Additional file 2: Table S1), defined as the LR interactions 
(permutation p-value < 0.05) that exhibited different com-
munication probabilities in AD and had genes encod-
ing ligands differentially expressed in AD (absolute log2 
fold change > 0.1 with an adjusted p-value < 0.05, Addi-
tional file 2: Table S1). Among them, 38 LR interactions 
were upregulated and 152 were downregulated in AD 
(Fig.  2b). Our analysis of the discovery dataset revealed 
complex intercellular communication patterns across 
various sender and receiver cell types. Notable interac-
tions occurred in the astrocytes-to-neurons, between 
excitatory and inhibitory neurons, and in the microglia-
to-astrocytes signaling pathways.

In astrocytes-to-neurons signaling, we found majorly 
decreased intercellular signals from astrocytes to the two 
major neuronal cell types (Fig.  2b, c). The dysregulated 
LR interactions involve known AD risk genes as ligands 
or receptors, such as APOE-LRP1 and APOE-SORL1. The 
APOE-LRP1 interaction is known to mediate the clear-
ance of β-amyloid across the BBB, thereby regulating 
β-amyloid transcytosis from the brain to the periphery. 
Targeting this pair has been suggested as a potential AD 
treatment [43, 44]. The receptor encoded by SORL1 has 
been implicated in β-amyloid clearance [45]. In addition 
to pinpointing well-known AD-associated intercellular 
signals, our analysis identified potential novel down-
regulated LR interactions in AD, such as PTN-PTPRS 
and PTN-CHD10. Pleiotrophin (PTN) is a heparin-bind-
ing growth factor that regulates peripheral and central 
immune responses. The interaction of PTN and PTPRS 
has been reported to play a role in neuroinflammation, an 
important component in AD [46]. In addition, NRXN1, 
encoding a presynaptic cell adhesion molecule that inter-
acts with Neuroligin 1 (NLGN1), was downregulated 
in our analyses. Notably, NLGN1, which modulates the 

toxicity of β-amyloid oligomers, was observed to be 
altered in the hippocampus of AD individuals [47–50].

Furthermore, we detected downregulation in the com-
munication signaling between excitatory and inhibi-
tory neurons (Fig.  2c, Additional file  1: Fig. S2d). The 
implicated genes encoding ligands calmodulin (CALM), 
specifically CALM1 and CALM3, were present in 18 
downregulated LR interactions between excitatory neu-
rons and inhibitory neurons. Our analysis also revealed 
downregulated CALM signals from neurons to non-neu-
ronal cell types, such as astrocytes and OPCs. This find-
ing indicates a potential association between calcium ion 
channel dysfunction, calcium dyshomeostasis, and AD 
pathology [51].

Remarkably, several upregulated LR interactions from 
microglia to astrocytes were identified, including C3-
CD81 and LR interactions with ligands encoded by APOE 
and PSAP. Particularly, complement component 3 (C3) 
and its receptor CD81 molecule (CD81) are recognized 
for their neuroinflammatory function between microglia 
and astrocytes, suggesting potential implications in AD 
pathophysiology (Fig. 2c, Additional file 1: Fig. S2c) [52, 
53].

Replication analysis of dysregulated intercellular 
communication in AD
To increase the validity of the results, we replicated 
the analysis using an independent snRNA-seq dataset 
(n = 56,440 nuclei) from UCI MIND-ADRC [11]. In the 
replication dataset, we identified 876 dysregulated LR 
interactions (258 upregulated and 618 downregulated LR 
interactions) across six major brain cell types (Additional 
file 3: Table S2). As shown in Fig. 2d, we successfully rep-
licated 107 out of 190 dysregulated LR interactions across 
the six major cell types (Additional file 4: Table S3). Spe-
cifically, we found consistent downregulation in LR inter-
actions in astrocytes-to-neurons and between excitatory 
and inhibitory neurons signaling. However, in the micro-
glia-to-astrocytes signaling, we found LR interactions, 
including C3-LRP1, C3-CD81, and A2M-LRP1, were 
upregulated in AD in the discovery dataset but down-
regulated in the replication dataset (Fig. 2c). On the other 
hand, the LR interaction, HSP90AA1-EGFR showed con-
sistent upregulation from the astrocytes to OPC. The 
EGFR signaling pathway is known to be associated with 
AD, and recent studies suggest that EGFR inhibitors can 
have potential beneficial effects in mitigating pathologi-
cal sequelae in AD [54].

Dysregulated intercellular signaling pathways
Our comparative analysis identified dynamic com-
munication patterns at the signaling pathway level 
(Additional file  1: Fig. S2e-g) in the discovery dataset, 
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revealing distinct changes in information flow between 
AD and control subjects. Interestingly, the two well-
known AD-associated pathways, APOE and PSAP 
signaling pathways, demonstrated a similar flow of infor-
mation between conditions, albeit with a reduced signal-
ing strength among astrocytes (Additional file 1: Fig. S2e). 
Moreover, most identified pathways exhibited decreased 
signaling strength in AD across various cell types. Nota-
bly, the outgoing and incoming signaling strengths of the 
IGF pathway were downregulated in AD in astrocytes, 
excitatory and inhibitory neurons (Additional file 1: Fig. 
S2f, g). This suggests a need for further examination of 
individual LR pairs within each signaling pathway.

Intracellular communication analysis revealed 
the regulatory potential of dysregulated ligand genes 
on the target genes in AD
Using NicheNet ligand activity analysis, we assessed 
the regulatory potential of ligand genes involved in 
dysregulated LR interactions, previously identified in 
our CellChat comparison analysis, on the DEGs within 
the receiver cells (Fig. 3, Additional file 1: Fig. S3). This 
analysis incorporated prior ligand-target regulatory 
relationships, as provided by the NicheNet package, 
revealing the influence of these ligand genes on DEGs 
in the receiver cells.

Fig. 3  Ligand–target gene analysis of dysregulated ligand-receptor (LR) interactions across astrocyte, inhibitory, and excitatory neurons. a 
Communication strength of dysregulated LR pairs from astrocytes to excitatory neurons. b The heatmap depicts the regulatory potential scores 
(purple) of each ligand of dysregulated LR pairs in the sender cell (astrocytes) to differentially expressed genes (DEGs) in the receiver cell (excitatory 
neurons). Ligands were ranked by the area under the precision-recall curve (AUPR, orange) and level of expression in astrocytes (red). The expression 
level of the predicted target gene in excitatory neurons is shown (yellow to red). c Bar plot shows the top 15 Gene Ontology Biological Processes 
(GO BP) significantly enriched by genes involved in dysregulated LR pairs between astrocytes and excitatory neurons and predicted target genes. 
d Communication strength of dysregulated LR pairs from inhibitory to excitatory neurons. e The heatmap depicts the regulatory potential scores 
(purple) of each ligand of dysregulated LR pairs in inhibitory neurons to DEGs in excitatory neurons. Ligands were ranked by the AUPR (orange) 
and level of expression in astrocytes (red). f Bar plot shows the top 15 GO BP significantly enriched in dysregulated LR pairs between inhibitory 
and excitatory neurons and predicted target genes. g Schematic figure shows the dysregulated LR pairs between astrocyte and excitatory neurons 
and predicted target genes
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Ligand genes of downregulated LR pairs from astro-
cytes to excitatory neurons, such as AGT​, APOE, and 
PTN, exhibited increased ligand activity but relatively low 
expression in AD (Fig. 3a, b, g). Notably, angiotensinogen, 
encoded by AGT, displayed the most substantial poten-
tial regulatory influence on DEGs in excitatory neurons, 
including FILIPL1, SYNPO, and MAPK3 (Fig. 3b). Addi-
tionally, ligand-target gene pair, APOE linked to CIRBP, 
was replicated in the replication dataset. We performed 
an over-representation analysis on genes involved in dys-
regulated LR interactions and predicted target genes to 
further elucidate underlying enriched GO BP. The back-
ground gene set for this analysis included all genes from 
the consensus LR dataset that were expressed in the rel-
evant cell types and genes expressed in either astrocytes 
or excitatory neurons, as described in the “Methods” 
section. The results indicated significant enrichment in 
the cell junction organization, postsynaptic membrane 
organization, and negative regulation of phosphoryla-
tion, among others (adjusted p-values < 0.05, Fig. 3c). The 
schematic information flow was depicted in Fig. 3g.

We next explored the regulatory potential of dysregu-
lated ligand genes in inhibitory neurons on the DEGs of 
excitatory neurons. Ligands encoded by genes, such as 
RTN4 and CALM1, exhibited high ligand activity, poten-
tially modulating the predicted target genes in excita-
tory neurons (Fig.  3d, e). Over-representation analysis 
of dysregulated LR gene pairs and predicted target genes 
between inhibitory and excitatory neurons yielded sig-
nificantly enriched GO BPs. The top enriched GO BPs 
included regulation of ion transport-related functions, 
cellular response to nitrogen compound, and regula-
tion of cyclase activity, among others (adjusted p-val-
ues < 0.05, Fig. 3f ). These findings suggest a critical role of 
transmembrane signaling dysregulation in AD pathology.

Integrative pathway‑level analyses revealed AD‑associated 
GO terms encompassing dysregulated LR interactions
Our comparative intercellular communication analy-
ses identified 107 dysregulated LR interactions across 
six major brain cell types in the discovery and replica-
tion datasets (Fig. 2, Additional file 4: Table S3). To gain 
a more profound understanding of the biological rel-
evance of dysregulated intercellular signaling in AD, 
we performed pathway analyses by incorporating AD 
GWAS summary statistics and WGS data (Fig.  1b). We 
downloaded all GO terms from three domains (BP, MF, 
and CC) from Molecular Signatures Database (version 
2023.1.Hs, accessed on March 6, 2023) [31]. We found 
229 GO terms containing at least one dysregulated LR 
gene pair (both ligand and receptor genes) that were 
identified and replicated in comparative intercellular 

communication analyses in discovery and replication 
snRNA-seq datasets.

We first performed MAGMA pathway analysis to lev-
erage AD GWAS summary statistics [20] on 229 can-
didate GO terms that contain at least one replicated 
dysregulated LR interaction pair. We found a total of 12 
GO (7 BP and 5 MF) terms significantly associated with 
AD (adjusted p-values < 0.05, Fig.  4a, Additional file  5: 
Table  S4). The most significant GO BP was related to 
“amyloid precursor protein metabolic and catabolic pro-
cesses” (Fig. 4a, adjusted p-value < 0.01). Furthermore, the 
MAGMA pathway analysis highlighted several GO MF 
terms, including “amide binding,” “peptide binding,” and 
“amyloid-beta binding” (Fig. 4a, adjusted p-values < 0.01). 
The LR gene pair APOE-SORL1 was consistently present 
across most of the significant GO terms identified by 
MAGMA. Interestingly, regulation of calcium ion trans-
port, harboring CALM1 and CALM3-related dysregu-
lated LR pairs, was identified as significantly associated 
with AD. In total, six LR interactions were validated by 
MAGMA (Additional file 5: Table S4).

Pathway-level PGSs have been suggested to better 
inform disease biology than classical PGSs [35]; there-
fore, we performed a pathway-level PGS analysis utilizing 
the PRSet tool on candidate GO terms containing dysreg-
ulated LR interactions [35]. We used the same AD GWAS 
summary statistics [20] as the base for PGS calculation 
and then the WGS data of 1746 individuals of European 
descent from three AD cohorts [37–39] to evaluate PGS 
performance, as described in the “Methods” section. Our 
analysis revealed the PGSs of 44 GO terms significantly 
associated with AD (competitive p-values < 0.05, Addi-
tional file  6: Table  S5). Figure  4b shows the top 15 GO 
terms associated with AD, primarily centered on endocy-
tosis-related cellular components, such as endocytic vesi-
cle and endocytic vesicle membrane. Additionally, the 
PRSet analysis indicated significant enrichment of “amy-
loid precursor protein catabolic and metabolic processes” 
in AD.

We identified 17 replicated LR interactions involved 
in GO terms significantly associated with AD supported 
by either MAGMA or pathway-level PGS analysis (Addi-
tional file 7: Table S6). Among these replicated LR inter-
actions, six were intricately intertwined with GO terms 
highlighted by both analyses. These six LR interactions, 
namely APOE-SORL1, APOE-LRP1, CALM1-CACNA1C, 
CALM1-RYR2, CALM3-CACNA1C, and CALM3-RYR2 
(Fig.  4c, d), consistently exhibited downregulation pat-
terns in AD in comparative intercellular communication 
analysis. We observed that APOE-SORL1 and APOE-
LRP1 involved downregulation in signaling, sending from 
astrocytes, and targeting neurons and other non-neu-
ronal cells in the discovery and the replication datasets 
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Fig. 4  Identification of Alzheimer’s disease (AD)-associated Gene Ontology (GO) terms encompassing the replicated cell type-specific 
dysregulated ligand-receptor (LR) pairs through a MAGMA or b PRSet analyses. The dot size represents the number of dysregulated LR pairs 
included in the pathway. c Bar plot shows the dysregulated LR pairs that were validated in both MAGMA and PRSet analyses. d Circle plot shows 
the downregulated intercellular signaling of six prioritized LR pairs between involved cell types. Ast astrocyte, Ex excitatory neuron, In inhibitory 
neuron, Mic microglia, OPC oligodendrocyte precursor cell
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(Additional file 4: Table S3). Furthermore, the intercellu-
lar signaling originating from neuronal cells and directed 
towards other non-neuronal cell types, mediated by the 
ligands encoded by CALM1 and CALM3 and their cor-
responding receptors encoded by CACNA1C and RYR2, 
displayed a downregulated trend in both the discovery 
and replication datasets (Additional file  2: Table  S1 and 
Additional file 3: Table S2).

Prioritization of repurposable drug targeting dysregulated 
cell–cell communication signals in AD
Finally, following our previous work, we explored poten-
tial repurposable drugs targeting the 17 high-confident 
dysregulated LR pairs [40]. By inquiring the Therapeutic 
Target Database, we identified 9 FDA-approved drugs 
capable of crossing the BBB [41, 42]. These drugs tar-
get one ligand (HSP90AA1) and three receptors (EGFR, 
CACNA1C, INSR) within the dysregulated LR inter-
actions (Table  1). Additionally, four receptors in these 
pairs were found to be targets of either investigational 
drugs or previously reported drugs in the literature 
(Table  1), including GRM5, GRM7, LRP1, and APOE. 
GRM5 refers to the metabotropic glutamate receptor 
5 (mGluR5), targeted by the drug ADX-48621, which is 
currently being investigated for Parkinson’s disease, dys-
kinesia, and mood disorders (https://​clini​caltr​ials.​gov/, 
NCT04857359). GRM7 refers to the metabotropic glu-
tamate receptor 7 (mGluR7) and is targeted by the drug 
MPPG, which is still a discovery agent [55]. Currently, 
there is no drug targeting LRP1 under investigation. For 
APOE, the drug AEM-28 is under study for hyperlipi-
demia [41].

Discussion
In this study, we integrated human brain snRNA-seq 
datasets, GWAS summary statistics, and WGS from 
AD and control individuals to identify cell type-specific 
dysregulated LR pairs and their underlying biological 
pathways. We identified key known and potential novel 
dysregulated LR interactions and highlighted vulnerable 
cell types in AD. Our pathway analyses further prior-
itized dysregulated LR interactions and related biologi-
cal pathways supported by genetic association data. Our 
analysis provides a detailed landscape of cellular commu-
nication alterations in AD (Figs. 2 and 4), highlighting the 
power of multi-layered data integration in the study of 
complex diseases.

Our integrative analysis revealed the critical role of 
dysregulated astrocytes-to-neurons signaling and related 
biological functions associated with AD. Our compre-
hensive bioinformatics analysis highlights that the well-
known gene APOE, which encodes the ligand in three 
dysregulated LR pairs, interacts with receptors encoded 
by LRP1, LRP6, and SORL1. The three dysregulated LR 
pairs were identified as downregulated in AD compared 
to controls in discovery and replication datasets (Fig. 2b, 
c). In addition, LR pairs containing APOE (APOE-LRP1 
and APOE-SORL1) were found to be involved in the top 
GO terms significantly associated with AD in our path-
way analyses, such as “GO CC: endocytic vesicle” and 
“GO BP: regulation of amyloid precursor protein cata-
bolic process” (Fig. 4a, b). Our integrative analysis, con-
sidering single-nucleus transcriptome and genotyping 
data of AD and controls, underscored the significant role 
of APOE signaling in the interplay between non-neurons 

Table 1  Drug repurposing analysis of Therapeutic Target Database

Target gene Target name Ligand-receptor gene pair Approved repurposable drug Indication

CACNA1C Voltage-gated calcium channel 
alpha Cav1.2 (CACNA1C)

CALM1-CACNA1C, CALM-CAC-
NA1C

Rauwolfia serpentina root Discovery agent

EGFR Epidermal growth factor receptor 
(EGFR)

HSP90AA1-EGFR, CALM3-EGFR Erlotinib Non-small-cell lung cancer

Gefitinib Solid tumor/cancer

Osimertinib Non-small-cell lung cancer

HSP90AA1 Heat shock protein 90 alpha 
(HSP90A)

HSP90AA1-EGFR Amlexanox Respiratory tract inflammation

Cromoglicate Respiratory tract inflammation

INSR Insulin receptor (INSR) SORBS1-INSR Insulin analogues Diabetic complication

Metformin arginine-hemisuc-
cinimide

Type-2 diabetes

Ryzodeq Type-2 diabetes

GRM5 Metabotropic glutamate recep-
tor 5 (mGluR5)

CALM1-GRM5, CALM3-GRM5 NA Clinical trial target

GRM7 Metabotropic glutamate recep-
tor 7 (mGluR7)

CALM1-GRM7, CALM3-GRM7 NA Literature-reported target

LRP1 Apolipoprotein E receptor (LRP1) APOE-LRP1 NA Literature-reported target

APOE Apolipoprotein E (APOE) APOE-SORL1 NA Clinical trial target

https://clinicaltrials.gov/
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and neurons in the pathophysiology of AD [27, 28]. In 
addition, pleiotrophin, encoded by PTN, is a heparin-
binding growth factor that regulates peripheral and 
central immune responses. In the discovery dataset, we 
found that PTN-involved LR interactions (PTN-PTPRS 
and PTN-PTPRB) were downregulated from astrocytes 
to excitatory and inhibitory neurons. The interactions 
of PTN with protein tyrosine phosphatase receptor type 
Z polypeptide 1 (PTPRZ1) and protein tyrosine phos-
phatase receptor type S polypeptide (PTPRB) may play a 
role in cell proliferation and regulation, both of which are 
important in AD [46].

Our analyses underscore the pivotal role of calcium 
dyshomeostasis in the pathogenesis of AD. Notably, 
CALM, encoded by CALM1 and CALM3, serves as a 
ligand in 18 replicated downregulated LR pairs between 
excitatory and inhibitory neurons in AD. These LR pairs 
displayed alterations between excitatory and inhibi-
tory neurons in our analysis. Among them, ten LR gene 
pairs (CALM1-GRM5, CALM1-GRM7, CALM1-RYR2, 
CALM3 -GRM3, and CALM5-GRM7, CALM3-RYR2, 
CALM1-CACNA1C, CALM3-CACNA1C, CALM3-
EGFR, CALM3-INSR) were prioritized in the pathway 
analyses (Additional file  7: Table  S6). Interestingly, the 
metabotropic glutamate receptor (GRM) was found to 
be the receptor in five of these 18 LR pairs. In general, 
CALMs interact with GRMs to regulate synaptic plastic-
ity. GRM5 gene is ubiquitously expressed in brain regions 
implicated in AD phenotypes in mice and in regions 
linked to memory and learning [56, 57]. Our pathway 
analyses highlighted GO BPs—such as regulation of cal-
cium ion transport, second messenger-mediated signal-
ing, and maintenance of location, which encompass four 
dysregulated LR pairs, including CALM1-RYR2, CALM3-
RYR2, CALM1-CACNA1C, and CALM3-CACNA1C 
(Fig. 4, Additional file 7: Table S6). RYR2 is a receptor to 
CALM1, and the binding of CALM1 to RYR2 has been 
shown to limit neuronal loss in AD [58]. Voltage-depend-
ent L-type calcium channel subunit alpha-1C (CAC-
NA1C) interacts with CALM1 and CALM3 to regulate 
calcium influx. It can be related to neuronal survival and 
synaptic efficiency and is thought to be involved in atten-
tion, learning, memory, and stress response [59–62].

Our ligand-target gene analysis revealed the poten-
tial regulatory role of ligand encoded by CALM1 on 
the DEGs in excitatory neurons. The predicted target 
gene, CIRBP, was replicated in the independent dataset 
(Fig. 3e). Cold-inducible RNA-binding protein (CIRBP) is 
a general stress-response protein, which was downregu-
lated in AD in our analysis (Fig. 3e). It has been proposed 
that CRIBP exerts a protective effect against neuronal 
amyloid toxicity via antioxidative and antiapoptotic path-
ways [63].

In our analysis, most intercellular signals mediated by 
LR pairs were downregulated across six major cell types 
in AD. Notably, we observed LR that interactions from 
microglia to astrocytes were upregulated in the discovery 
dataset, although downregulated in the replication data-
set (Fig. 2c). Among the dysregulated LR interactions, C3 
was found to be altered as a ligand in two different LR 
pairs, C3-LRP1 and C3-CD81. Both pairs were upregu-
lated in microglia, astrocytes, and OPCs, with microglia 
as the sender and astrocytes and OPCs as the receivers 
in the discovery dataset (Fig. 2c). C3 is a protein that is 
part of the complement system and part of the immune 
system; it co-localizes with amyloid plaques in AD. Low-
density lipoprotein receptor-related protein 1 (LRP1) is 
a surface receptor and mediates pathways that interact 
with astrocytes and pericytes, the last of which is associ-
ated with the BBB. LRP1 expression is known to decrease 
in endothelial cells due to normal aging and in AD. C3 
interacts and can bind with low-density LRP1 to regulate 
immune response and participate in several cellular pro-
cesses [44, 64–67]. Ligand C3 and receptor CD81 play an 
inhibitory role in the control of immune responses [52]. 
We also identified alpha-2-macroglobulin (A2M) as a 
ligand in the A2M-LRP1 pair, which was upregulated in 
microglia in the discovery dataset. A2M interacts with 
LRP1 to regulate cholesterol metabolism and is con-
sidered a potential therapeutic target in AD [64]. Our 
ligand-target gene analysis from microglia to astrocytes 
suggests the regulatory potential of ligands encoded by 
A2M and C3 on the DEGs in the receiver cells (Addi-
tional file  1: Fig. S3). Over-representation analysis on 
genes involved in dysregulated LR pairs and predicted 
target genes indicated significant enrichment in GO BPs, 
including amyloid-beta clearance and functions related 
to regulation of cholesterol and sterol transport (adjusted 
p-value < 0.05, Additional file 1: Fig. S3c).

Moreover, one replicated dysregulated LR interaction, 
NRXN1-NLGN1, is related to neurexins (NRXNs) and 
neuroligins (NLGNs), and their signaling is decreased in 
AD in a myriad of cell types, including astrocytes, excita-
tory, and inhibitory neurons. The NRXNs are cell-surface 
receptors that bind NLGNs, forming a crucial trans-
synaptic complex at brain synapses. This transsynaptic 
complex is vital for efficient neurotransmission and is 
involved in forming synaptic contacts and functional syn-
aptic structures. Recent reports suggest that NRXNs and 
NLGNs undergo proteolytic processing by presenilins at 
synapses, a mechanism implicated in AD, suggesting a 
potential dysfunction in the NRXN-NLGN pathway in 
AD pathology [47].

Further, we observed upregulation of other LR pairs, 
including PSAP-LRP1 and PSAP-GPR37, in astrocytes, 
microglia, and OPCs in the discovery dataset (Fig.  2c, 
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Additional file 2: Table S1). Prosaposin (PSAP) is a highly 
conserved glycoprotein that is a precursor of saposins; it 
also serves as a neurotrophic factor and a regulator of lys-
osomal enzymes. PSAP is known to interact with LRP1 in 
AD, with the interaction between PSAP and LRP1 being 
involved in the regulation of amyloid-beta metabolism 
[68]. The expression of PSAP and its receptor GPR37 is 
upregulated in the hippocampus of individuals with AD 
[69–71].

Finally, other LR pairs possibly related to AD involved 
genes that encode receptors, such as epidermal growth 
factor receptor (EGFR), insulin receptor (INSR), corti-
cotropin-releasing hormone receptor 1 (CRHR1), and 
adenylate cyclase-activating polypeptide type I receptor 
(ADCYAP1R1) (Additional file 1: Fig. S2c, d). In general, 
they are involved in cell proliferation and differentiation, 
glucose metabolism, and stress response [72]. In addi-
tion, EGFR has been identified as the receptor in two 
upregulated LR pairs, involving heat shock protein 90 
alpha family class A member 1 (HSP90AA1) and neureg-
ulin 3 (NRG3) as the ligands. Both are implicated in cell 
proliferation and differentiation; NRG3 has been impli-
cated in cognitive impairment [73, 74]. INSR was also 
found as a gene that encodes the receptor for sorbin and 
SH3 domain-containing protein 1 (SORBS1), downregu-
lated in astrocytes, excitatory neurons, inhibitory neu-
rons, and oligodendrocytes; the SORBS1-INSR is known 
to regulate glucose metabolism. Moreover, we found that 
the GO BP term “regulation of cellular and carbohydrate 
metabolic process” encompassing SORBS1-INSR was 
associated with AD (Additional file 6: Table S5).

Our drug target analysis revealed existing and poten-
tially novel therapeutic targets of dysregulated LR pairs 
in AD. Regarding EGFR, erlotinib, gefitinib, and osimer-
tinib were found to be potential drugs for repurposing. 
Both erlotinib and osimertinib are used to treat lung and 
pancreatic cancers and can cross the BBB (Table 1). They 
are tyrosine kinase inhibitors that work by blocking the 
kinase activity of EGFR, which is involved in cell growth 
and survival [75]. Erlotinib and gefitinib also have anti-
oxidant properties [76]. It has been hypothesized that 
both drugs may enhance axon regeneration after neuro-
degeneration [54]. Moreover, two drugs that target the 
HSP90AA1 receptor were identified, amlexanox, and 
cromoglicate (also called cromolyn). Both have anti-
inflammatory properties, with cromolyn specifically 
reducing neuroinflammation. Cromolyn has been pro-
posed as a new therapeutic target for AD [77]. Cromolyn 
has been shown to reduce levels of amyloid beta by pro-
moting microglial phagocytosis [78, 79]. It also reduces 
the secretion of inflammatory cytokines by the microglia 
[80], reducing neuroinflammation in neural cells. The 

root of Rauwolfia serpentina, currently a discovery agent, 
targets the receptor CACNA1C. This compound has ace-
tylcholinesterase (AChE) inhibitory activities, a mecha-
nism that has been proposed to treat AD [81], and has 
shown neuroprotective activity.

Recently, brain insulin resistance has been found 
to play a role in normal memory processes, and insu-
lin irregularities may contribute to cognitive and brain 
changes associated with AD [82]. Metformin and insulin 
target the INSR and appeared as potentially repurposable 
drugs in our analyses. Evidence from clinical studies has 
demonstrated that metformin use contributes to a lower 
risk of developing AD and to better cognitive perfor-
mance [83]. Intranasally administered insulin is assumed 
to trigger improvements in synaptic plasticity, regional 
glucose uptake, and alleviations of AD neuropathology. 
Pilot clinical trials of intranasal insulin administration in 
individuals with mild cognitive impairment or AD indi-
cate that acute and prolonged intranasal insulin adminis-
tration can enhance memory performance [84].

While our integrative study used multiple large-scale 
datasets, there were several limitations. First, our infer-
ence of dysregulated LR interaction was primarily 
dependent on the completeness of snRNA-seq datasets, 
cell type annotation, and the reliability of the LR data-
set. Despite employing one of the most comprehensive 
snRNA-seq datasets of AD and controls currently availa-
ble [9], we limited our analysis to six major cell types due 
to a relatively low cell count of pericytes and endothelial 
cells. We also performed a replication analysis to ensure 
the reliability of the analysis. However, more complex 
intercellular signals could be unveiled in rare cell types 
or subclasses of major cell types with the employment 
of larger snRNA-seq datasets. Further work is antici-
pated by leveraging novel computational methods, such 
as Scriabin [85], to identify more specific signals at indi-
vidual cell levels related to AD. Second, inadequate anno-
tation of intercellular signaling pathways and intracellular 
regulatory networks may impede our pathway analyses 
of dysregulated LR pairs in AD. To address this point, we 
utilized comprehensive GO gene sets to evaluate the bio-
logical functions influenced by dysregulated LR signals in 
AD. Third, our cell–cell communication analysis was lim-
ited to the PFC region. Considering that AD pathology 
affects multiple brain regions, including the entorhinal 
cortex and hippocampus, further investigations across 
multiple brain regions are necessary for a more in-depth 
understanding of region-specific dysregulated intercel-
lular signals in AD. Fourth, due to the cross-sectional 
nature of our study, we cannot ascertain causality. It is 
not possible to determine if alterations in the LR pairs are 
a cause or consequence of AD. We speculate that at least 
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some of the altered LR pairs are causally related to AD, 
following the rationale that genetic variants associated 
with AD would affect gene expression and then protein 
expression of a biological pathway that involves deregu-
lated intercellular communication in AD. Finally, rigor-
ous laboratory experimental validation, which we did not 
perform because it was outside the scope of this study, 
would further validate the causal relationships between 
identified dysregulated intercellular interactions and dis-
ease progression.

Conclusions
Our comprehensive in silico investigation provides novel 
insights into the complex intercellular signaling dynamics 
underpinning AD. By applying a novel analysis pipeline 
integrating snRNA-seq, GWAS, and WGS, we unveiled 
the intricate landscape of dysregulated LR pairs across 
six major cell types in AD and their potential drug tar-
gets. Notably, our findings highlight the pivotal contribu-
tions of non-neuronal cell types, particularly astrocytes, 
in the disruption of intercellular signaling networks in 
AD. These dysregulated signals, with a focus on ligands 
encoded by CALM and APOE, consistently emerge as key 
players in our comparative intercellular communication 
analysis, evident across both discovery and replication 
datasets, as well as in pathway analyses. Our discoveries 
lay a solid in silico foundation for further exploration of 
the roles of these dysregulated LR pairs in the pathogene-
sis of AD and their potential implications for therapeutic 
interventions.
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Additional file 1: Figure S1. Description of the discovery and replication 
datasets. The Uniform Manifold Approximation and Projection of single 
nuclei RNA sequencing (snRNA-seq) data of the (a) discovery dataset and 
(c) replication dataset after preprocessing and filtration. Major cell type 
proportion of each sample in (b) discovery dataset and (d) replication 
dataset after preprocessing and filtration. The compositional analysis of 
single-cell data using scCODA in the (e) discovery dataset and (f ) replica-
tion dataset. Ast: astrocyte; Ex: excitatory neuron; In: inhibitory neuron; 
Mic: microglia; Oli: oligodendrocyte; OPC: oligodendrocyte precursor 
cell. Figure S2. (a) The Venn diagram shows the number of inferred 
ligand-receptor (LR) interactions and overlaps between AD and control 
in the discovery dataset. (b) The difference in the number of intercel-
lular interactions and difference in interaction strength between AD and 
controls across major cell types in the brain. (c) Bubble plot shows the 
cell-type-specific upregulated LR pairs in AD. LR interactions with ligand 
genes differentially expressed between AD and control were highlighted 
and defined as dysregulated LR interactions. (d) Bubble plot shows the 
cell-type-specific downregulated LR pairs in AD. LR interactions with 
ligand genes differentially expressed between AD and control were 
highlighted and defined as dysregulated LR interactions. (e) The relative 
information flow within intercellular signaling pathways, defined as the 
summation of interaction strength within the pathway, quantitatively 
compared between AD and controls. (f ) The cell type-specific outgoing 
signaling patterns in controls (left) and AD (right). The color represents the 
relative outgoing signaling strength of each signaling pathway. (g) Cell 
type-specific incoming signaling patterns in controls (left) and AD (right). 
The color represents the relative incoming signaling strength of each sign-
aling pathway. Figure S3. Ligand–target gene analysis of dysregulated 
ligand-receptor (LR) pairs from microglia to astrocytes. (a) Communication 
strength of dysregulated LR pairs from microglia to astrocyte in AD and 
controls. (b) The heatmap depicts the regulatory potential scores (purple) 
of each ligand gene of dysregulated LR pairs in microglia to differentially 
expressed genes (DEGs) in astrocytes. The ligand genes were ranked by 
the area under the precision-recall curve (AUPR, orange) and the level of 
expression in astrocytes (red). The expression level of the predicted target 
gene in excitatory neurons is shown (yellow to red). (c) Bar plot shows 
the top 15 Gene Ontology Biological Processes significantly enriched 
in dysregulated LR pairs between microglia and astrocytes and their 
predicted target genes. (d) Volcano plot depicts the DEGs in astrocytes in 
the discovery dataset.

Additional file 2: Table S1. Dysregulated ligand-receptor interactions in 
AD identified in the discovery dataset.

Additional file 3: Table S2. Dysregulated ligand-receptor interactions in 
AD identified in the replication dataset.

Additional file 4: Table S3. Replicated dysregulated ligand-receptor 
interactions in AD identified in both discovery and replication datasets.

Additional file 5: Table S4. Alzheimer’s disease-associated Gene Ontol-
ogy terms identified in the MAGMA gene-set analysis.

Additional file 6: Table S5. Alzheimer’s disease-associated Gene Ontol-
ogy terms identified in the PRSet analysis.

Additional file 7: Table S6. Ligand-receptor pairs prioritized by MAGMA 
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