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Abstract 

Background  The effect of amyloid-β (Aβ) on cognitive impairment in patients with small subcortical infarction 
remains controversial, although a growing body of evidence shows a substantial overlap between Alzheimer’s disease 
(AD) and subcortical ischemic vascular dementia, another form of cerebral small vessel disease (cSVD). Therefore, we 
investigated the relationships between Aβ positivity and the development of post-stroke cognitive impairment (PSCI) 
in patients with small subcortical infarction.

Methods  We prospectively recruited 37 patients aged ≥ 50 years, with first-ever small subcortical infarction, who 
underwent amyloid positron emission tomography, 3 months after stroke at Korea University Guro Hospital. We 
also enrolled CU participants matched for age and sex with stroke patients for comparison of Aβ positivity. Patients 
were followed up at 3 and 12 months after the stroke to assess cognitive decline. Logistic and linear mixed-effect 
regression analyses were performed to identify the effect of Aβ positivity on PSCI development and long-term cogni‑
tive trajectories.

Results  At 3 months after stroke, 12/37 (32.4%) patients developed PSCI, and 11/37 (29.7%) patients had Aβ deposi‑
tion. Aβ positivity (odds ratio [OR] = 72.2, p = 0.024) was predictive of PSCI development regardless of cSVD burden. 
Aβ positivity (β = 0.846, p = 0.014) was also associated with poor cognitive trajectory, assessed by the Clinical Demen‑
tia Rating-Sum of Box, for 1 year after stroke.

Conclusions  Our findings highlight that Aβ positivity is an important predictor for PSCI development and cognitive 
decline over 1 year. Furthermore, our results provide evidence that anti-AD medications may be a strategy for pre‑
venting cognitive decline in patients with small subcortical infarctions.
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Background
A considerable number of post-stroke survivors suffer 
from post-stroke cognitive impairment (PSCI), which 
in turn leads to impaired activities of daily living and 
an increased burden on caregivers, regardless of physi-
cal disability [1–3]. Alzheimer’s disease (AD), character-
ized by the deposition of amyloid-β (Aβ) in the brain is 
the most common cause of dementia, and AD pathol-
ogy may be an important risk factor for the develop-
ment of PSCI. Animal studies have shown that cerebral 
ischemia triggers accelerated Aβ deposition [4]. Despite 
the apparent association in animal studies, the interac-
tion between PSCI and Aβ deposition in humans remains 
controversial.

Cerebral small vessel disease (cSVD) causes various 
clinical syndromes, including subcortical ischemic vas-
cular dementia (SIVD) and lacunar syndromes. Differ-
ent from PSCI, a growing body of evidence shows that 
AD and SIVD affect one another interactively [5], and 
Aβ deposition and cSVD burden have synergistic effects 
on cognitive decline. The mechanism of PSCI may dif-
fer from by ischemic stroke subtype (territorial, lacunar, 
or cardioembolic infarction). However, many previous 
studies investigated the Aβ positivity in all types of stroke 
survivors and, therefore, failed to focus on one etiol-
ogy of ischemic stroke. The effects of lesion size and 
strategic location may override the role of Aβ deposi-
tion in patients with PSCI with territorial and strategic 
infarctions.

Therefore, in this study, we investigated the relation-
ship between Aβ deposition and development of PSCI. 
Additionally, we explored the cognitive trajectory after 
ischemic stroke based on Aβ positivity. To minimize the 
effect of stroke lesion size and strategic site, participants 
were limited to those with small subcortical infarctions. 
Considering the substantial overlap between AD and 
SIVD, we hypothesized that Aβ deposition is predictive 
of the development of PSCI in patients with small sub-
cortical infarctions.

Methods
Study participants
Patients, aged ≥ 50 years with first-ever ischemic stroke, 
who were admitted to Korea University Guro Hospital 
within 7 days of ischemic stroke were screened for enroll-
ment eligibility from June 1, 2021, to April 1, 2022. At 
baseline, all patients with ischemic stroke underwent a 
comprehensive stroke evaluation, including neurologi-
cal examination using the National Institutes of Health 
Stroke Scale (NIHSS), functional outcome using the 
modified Rankin scale, and brain magnetic resonance 
imaging (MRI).

We prospectively enrolled patients with small sub-
cortical infarctions to eliminate the effects of the stroke 
lesion size and strategic site. We excluded patients with 
the following conditions: (1) strategic infarcts involv-
ing the anterior thalamus and hippocampus; (2) severe 
aphasia (NIHSS language score > 1), visual impairment, 
or physical disabilities (Modified Rankin Scale score > 
2) due to ischemic stroke; and (3) presence of premor-
bid cognitive impairment, neurodegenerative diseases, 
lobar hemorrhage, or psychiatric disorders.

Premorbid cognitive impairment was determined 
using the Informant Questionnaire on Cognitive 
Decline in the Elderly (IQCODE) [6], answered by the 
participants’ spouses or a first-degree relative. A score 
of ≥ 3.6 on the IQCODE indicated premorbid cognitive 
impairment, and the participants were excluded [6].

Hypertension was defined as a diagnostic history of 
hypertension or current use of any antihypertensive 
medication, and diabetes was defined as a diagnostic 
history of diabetes or current use of any anti-diabetic 
medication.

Cognitively unimpaired (CU) participants without stroke
We also enrolled CU participants matched for age and 
sex with stroke patients. These participants did not 
have a history of stroke, neurodegenerative disease, or 
psychiatric disorders and were composed of spouses 
of patients who visited the neurology clinic, volunteers 
who applied for comprehensive dementia evaluation 
advertised in the paper, and participants who had cog-
nitive complaints. They visited the Memory Clinic in 
the Department of Neurology at Korea University Guro 
Hospital and underwent a comprehensive dementia 
evaluation.

All CU participants met the following criteria: (1) no 
medical history which is likely to affect cognitive func-
tion based on Christensen’s health screening criteria [7], 
(2) no objective cognitive impairment from comprehen-
sive neuropsychological test battery on any cognitive 
domains (no cognitive test fell more than 1.0 standard 
deviation [SD] below age-adjusted norms), (3) independ-
ent in activities of daily living, and (4) neither structural 
lesions nor severe white matter hyperintensities (WMH) 
on brain MRI.

Hypertension was defined as a diagnostic history of 
hypertension or current use of any antihypertensive 
medication, and diabetes was defined as a diagnostic 
history of diabetes or current use of any anti-diabetic 
medication.

This study was approved by the Institutional Review 
Board of the Korea University Guro Hospital. Written 
informed consent was obtained from all participants.
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Follow‑up assessment
All patients with stroke were followed up at 3 and 12 
months after ischemic stroke. At the follow-up visit at 
3 months, the patients underwent a neuropsychological 
battery using the Korean version of the Vascular Cogni-
tive Impairment Harmonization Standards neuropsycho-
logical battery (K-VCIHS-NP) [8], Korean version of the 
Mini-Mental Status Examination (K-MMSE) [9], Clini-
cal Dementia Rating-Sum of Box (CDR-SOB) [10], amy-
loid PET, and a second MRI. At the follow-up visit at 12 
months, patients underwent the K-MMSE and CDR-SOB 
to evaluate the trajectory of global cognition.

CU participants without stroke were also followed up 
at 12 months after the initial comprehensive evaluation. 
At the follow-up visit at 12 months, CU participants also 
underwent the K-MMSE and CDR-SOB.

Comprehensive neuropsychological battery
Patients underwent neuropsychological testing using 
the K-VCIHS-NP [8]. Seven cognitive measures were 
included in the battery, which were representative and 
important neuropsychological tests to evaluate the cog-
nitive function in five cognitive domains as follows: (1) 
memory: the Seoul Verbal Learning Test (SVLT) delayed 
recall (verbal memory); (2) language: Korean version of 
the Boston Naming Test (K-BNT); (3) visuospatial func-
tion: the Rey Complex Figure Test (RCFT) Copying 
Test; and (4) frontal-executive function: the Digit Span 
Test Backward, animal component of the Controlled 
Oral Word Association Test (COWAT), and phonemic 
component of the COWAT and the Stroop Test (color 
reading). Results with continuous numeric values were 
converted to z-scores using the age, sex, and education 
criteria presented in the K-VCIHS-NP, and the z-scores 
were used in the analysis.

Diagnosis of vascular cognitive impairment and vascular 
dementia
PSCI was defined according to the modified Peterson 
criteria and results of the K-VCIHS-NP. In the K-VCIHS-
NP, cognitive functions were classified as impaired when 
objective cognitive impairment was − 1.5 SD on at least 
two different cognitive domains. The frontal domain con-
sists of four neuropsychological tests. Cognitive impair-
ment in the frontal domain was classified as objective 
cognitive impairment − 1.5 SD on two or more tests.

Amyloid PET acquisition and visual reading
The patients underwent 18F-florbetaben PET using a 
discovery MI PET/computed tomography (CT) scanner 
(GE Medical Systems, Milwaukee, WI, USA). A 20-min 
emission PET scan in dynamic mode (comprising 4 × 

5 min frames) was performed 90 min after the injec-
tion of a mean dose of 296 MBq 18F-florbetaben. Three-
dimensional PET images were reconstructed in a 384 × 
384 matrix with 0.65 × 0.65 × 2·79 mm voxel size using 
the ordered-subsets expectation maximization algorithm 
(iteration = 8 and subset = 34).

Amyloid PET images were reviewed by three experi-
enced physicians (one neurologist and two nuclear medi-
cine doctors) who were blinded to clinical information 
and dichotomized as either Aβ positive or negative using 
visual reads [11]. 18F-florbetaben PET was classified as 
positive when interpreters scored the visual assessment 
as 2 or 3 on the brain amyloid-plaque load (BAPL) score 
[11, 12]. Specifically, the regional cortical tracer uptake 
(RCTU) score was used for four brain areas (lateral tem-
poral cortex, frontal cortex, posterior cingulate, cortex/
precuneus, and parietal cortex). RCTU scores of 1, 2, and 
3 indicated no tracer uptake, moderate tracer uptake, and 
pronounced tracer uptake, respectively.

An RCTU score of 1 in each brain region corresponded 
to a BAPL score of 1, an RCTU score of 2 in any brain 
region and no score of 3 corresponded to a BAPL score of 
2, and an RCTU score of 3 in any of the four brain regions 
corresponded to a BAPL score of 3. Inter-rater agree-
ment was excellent (Fleiss, k = 0.89). After the physicians 
individually rated, we determined the final Aβ positivity 
based on the majority of the visual reading result.

MRI acquisition and WMH visual rating
We acquired standardized three-dimensional T1 Turbo 
Field Echo and three-dimensional fluid-attenuated inver-
sion recovery (FLAIR) images using a 3.0-T MRI scanner 
(Philips 3.0T Ingenia Elition X; Philips Healthcare, Ando-
ver, MA, USA) by following imaging parameters: sagittal 
slice thickness, 0.6 mm; no gap; TR, 4800 ms; TE, 363 
ms; flip angle, 90°; and matrix size, 288 × 287 pixels. As 
described previously [13], the Clinical Research Center 
for Dementia of South Korea WHM visual rating scale 
was used to investigate WMH in the deep subcortical 
and periventricular regions of the FLAIR images.

Briefly, deep WMH (DWMH) were classified as D1 (< 
10 mm), D2 (10–25 mm), or D3 (≥ 25 mm) based on the 
longest lesion diameter. Periventricular WMH (PWMH) 
were classified as P1 (cap and band < 5 mm), P2 (5–10 
mm), or P3 (cap or band ≥ 10 mm) based on the maxi-
mum length measured perpendicular (cap) and hori-
zontal (band) to the ventricle. The combination of these 
D and P ratings yielded nine cells and the overall WMH 
severity (minimal, moderate, and severe) was defined 
based on the following combinations of D and P rat-
ings: minimal (D1P1 and D1P2), moderate (D1P3, D2P1, 
D2P2, D2P3, D3P1, and D3P2), and severe (D3P3).
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We also counted the number of microbleeds (MBs), 
defined as ≤ 10 mm in diameter on 150 axial slices of T2 
susceptibility-weighted imaging-MRI by following imag-
ing parameters: sagittal slice thickness, 2.0 mm; no gap; 
TR, 24 ms; TE, 0 ms; flip angle, 18°; and matrix size, 384 
× 383 pixels [14]. Strictly lobar MBs (number of lobar 
MBs ≥ 1 and deep MBs = 0) and cerebral superficial 
siderosis (cSS) were considered as cerebral amyloid angi-
opathy (CAA) markers. Regarding lobar MBs, the lobar 
regions were according to the criteria proposed by Gre-
goire et al. [15]. cSS was defined as chronic blood linear 
residues in superficial layers of the cerebral cortex [16].

Statistical analyses
For comparison between the clinical characteristics 
of stroke and CU without stroke groups, independent 
t-tests and chi-squared tests were used. To assess the 
effect of stroke on longitudinal cognitive changes, we 
performed a linear mixed-effect regression analysis and 
included stroke group (stroke vs CU without stroke), 
time, and stroke group × time as fixed effects, along with 
age, sex, years of education, hypertension, diabetes, Aβ 
positivity, and WMH severity. The patients were included 
as random effects. To identify the association of stroke 
with cognitive function at 3 months and 12 months, we 
performed linear regression analyses with the stroke 
group as a predictor after controlling for with age, sex, 
years of education, hypertension, diabetes, Aβ positivity, 
and WMH severity.

In stroke groups, independent t-tests and chi-squared 
tests were used to compare the clinical characteristics 
of the post-stroke normal cognition (PSNC) and PSCI 
groups. To investigate the association between Aβ dep-
osition and the development of PSCI, we performed a 
logistic regression analysis with Aβ positivity, hyperten-
sion, diabetes, and WMH severity as predictors and PSCI 
development as an outcome after controlling for age, sex, 
and years of education. To assess the effect of Aβ posi-
tivity on longitudinal cognitive changes, we performed a 
linear mixed-effect regression analysis and included Aβ 
positivity, time, and Aβ positivity × time as fixed effects, 
along with age, sex, years of education, hypertension, dia-
betes, and WMH severity. The patients were included as 
random effects. To identify the association of Aβ positiv-
ity with cognitive function at 3 months and 12 months, 
we performed linear regression analyses with Aβ positiv-
ity as a predictor after controlling for with age, sex, years 
of education, hypertension, diabetes, and WMH severity.

All reported p-values were two-sided, and the signifi-
cance level was set at 0.05. All analyses were performed 
using R version 4.3.0 (Institute for Statistics and Mathe-
matics, Vienna, Austria; http://​www.r-​proje​ct.​org, RRID: 
SCR_001905).

Results
Clinical characteristics of the participants
Of the 52 patients with stroke prospectively enrolled for 
the baseline evaluation, 15 missed the cognitive assess-
ment follow-up at 3 months. The mean age (p = 0.920), 
female ratio (p = 1.000), years of education (p = 0.196), 
and rates of diabetes (p = 1.000) did not differ between 
the patients with stroke and CU participants without 
stroke. Patients with stroke had a higher frequency of 
hypertension (73.0% vs 45.9%; p = 0.033) and WMH bur-
dens (moderate WMH, 24.3% vs 5.4%; severe WMH, 8.1% 
vs 0.0%; p = 0.010) than CU participants without stroke. 
None of the patients with stroke and CU participants had 
CAA markers including cSS and strictly lobar MBs.

Regarding the development of PSCI in patients 
with stroke, 3 months after the stroke, 12/37 (32.4%) 
patients developed PSCI (Table 1). The mean age (p = 
0.238), female ratio (p = 0.228), years of education (p 
= 0.128), and rates of hypertension (p = 0.168) did not 
differ between the PSCI and PSNC groups. Patients 
with PSCI had a higher frequency of diabetes (58.3%) 
than  those with PSNC (16.0%; p = 0.024).

Aβ positivity between stroke and CU without stroke 
groups
Aβ positivity was higher in the stroke group (29.7%) 
than in the age- and sex-matched CU without stroke 
group (16.2%), while the difference was not significant.

Cognitive trajectory between the stroke and CU 
without stroke groups
Compared with the CU without stroke group, the 
stroke group was associated with lower K-MMSE (at 
3 months, β = − 2.079, p = 0.004; at 12 months, β = 
− 2.392, p = 0.002) and CDR-SOB scores (at 3 months, 
β = 1.124, p < 0.001; at 12 months, β = 0.966, p = 
0.001), irrespective of Aβ positivity and WMH sever-
ity. However, the stroke group was not associated with 
faster deterioration in CDR-SOB (β = 0.098, p = 0.592) 
and K-MMSE score (β = − 0.676, p = 0.076), after con-
trolling for Aβ positivity and WMH severity.

Aβ deposition and PSCI development in patients 
with stroke
Among patients with small subcortical infarction, Aβ 
positivity (odds ratio [OR] = 72.2, p = 0.024) was asso-
ciated with PSCI development, independently of WMH 
(Table 2; Fig. 1). Additionally, the presence of diabetes 
(OR = 32.9, p = 0.042) and severe WMH (OR = 214.0, p 
= 0.046) were associated with PSCI development.

http://www.r-project.org
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Aβ deposition and cognitive trajectory after stroke
Longitudinal changes in K-MMSE or CDR-SOB scores 
based on Aβ positivity among patients with small sub-
cortical infarctions are illustrated in Fig. 1. Aβ positivity 

was associated with faster deterioration in CDR-SOB (β 
= 0.846, p = 0.014), while Aβ positivity was not associ-
ated with faster decline in K-MMSE score (β = − 1.164, 
p = 0.083; Table 3, Fig. 1). Additionally, Aβ positivity was 
associated with lower K-MMSE (β = − 3.380, p = 0.016) 
and CDR-SOB scores (at 3 months, β = 1.072, p = 0.025; 
at 12 months, β = 1.770, p = 0.004), except for K-MMSE 
score at 3 months (β = − 2.363, p = 0.071).

Discussion
In the present study, we investigated the relationships 
between Aβ deposition and the development of PSCI in 
patients with small subcortical infarctions. Our major 
findings are as follows: First, Aβ positivity was 29.7% in 
patients with small subcortical infarctions, which was 
higher than that in CU participants without stroke. Sec-
ond, Aβ positivity was predictive of PSCI development 
regardless of cSVD burden. Finally, Aβ positivity was 
associated with a poor cognitive trajectory 1 year after 

Table 1  Demographic and clinical characteristics of the study participants

Values are presented as mean ± SD or n (%)

Abbreviations: Aβ Amyloid-β, APOE Apolipoprotein E, CDR-SOB Clinical Dementia Rating-Sum of Box, cSVD Cerebral small vessel disease, CU Cognitively unimpaired, 
K-MMSE Korean version of the Mini-Mental Status Examination, MB Microbleed, PSNC Post-stroke normal cognition, PSCI Post-stroke cognitive impairment, WMH White 
matter hyperintensity, SD Standard deviation
* p-value was obtained by independent t-tests and chi-squared tests between the PSNC and PSCI groups
¥ p-value was obtained by independent t-tests and chi-squared tests between patients with stroke and CU without stroke groups

Group Patients with stroke CU without stroke 
(n = 37)

p¥

PSNC (n = 25) PSCI (n = 12) p* Total (n = 37)

Demographics

  Age, years 71.3 ± 8.0 74.7 ± 8.0 0.238 72.4 ± 8.1 72.6 ± 8.2 0.920

  Sex, female 6 (24.0%) 6 (50.0%) 0.228 12 (32.4%) 13 (35.1%) 1.000

  Education, years 9.4 ± 4.2 6.9 ± 5.1 0.128 8.6 ± 4.6 10.0 ± 4.8 0.196

  APOE, e4 carrier 6 (24.0%) 7 (58.3%) 0.093 13 (35.1%) 7 (18.9%) 0.116

  Hypertension 16 (64.0%) 11 (91.7%) 0.168 27 (73.0%) 17 (45.9%) 0.033

  Diabetes 4 (16.0%) 7 (58.3%) 0.024 11 (29.7%) 11 (29.7%) 1.000

Cognition

  K-MMSE 26.1 ± 3.8 22.3 ± 3.7 0.008 24.9 ± 4.1 27.9 ± 1.9 < 0.001

  CDR-SOB 0.90 ± 0.54 2.71 ± 1.36 0.001 1.49 ± 1.22 0.20 ± 0.36 < 0.001

Aβ deposition

  Aβ positivity 4 (16.0%) 7 (58.3%) 0.024 11 (29.7%) 6 (16.2%) 0.167

cSVD burden

  WMH severity 0.228 0.010

    Moderate WMH 5 (20.0%) 4 (33.3%) 9 (24.3%) 2 (5.4%)

    Severe WMH 1 (4.0%) 2 (16.7%) 3 (8.1%) 0 (0.0%)

  Lacune counts 0.7 ± 1.4 0.7 ± 1.1 0.977 0.7 ± 1.3 0.1 ± 0.3 0.006

  MB counts 0.6 ± 1.4 0.6 ± 1.1 0.972 0.6 ± 1.3 0.4 ± 1.2 0.458

CAA markers

  cSS 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

  Strictly lobar MB 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Table 2  Association of Aβ positivity with PSCI

Abbreviations: Aβ Amyloid-β, PSCI Post-stroke cognitive impairment, OR Odds 
ratio, CI confidence interval, WMH White matter hyperintensity
* OR was obtained by logistic regression analysis with hypertension, diabetes, 
Aβ positivity, and WMH together as predictors and PSCI development as an 
outcome, after controlling for age, sex, and years of education

Presence of PSCI in patients 
with stoke

OR (95% CI)a p

Risk factors Hypertension 9.5 (0.6–437.4) 0.161

Diabetes 32.9 (2.15–2962.9) 0.042

Aβ deposition Aβ positivity 72.2 (3.87–9355.2) 0.023

WMH Moderate WMH 3.6 (0.2–100.3) 0.391

Severe WMH 214.0 (2.8–224,228.2) 0.046
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stroke. Taken together, our findings suggest that Aβ posi-
tivity is an important predictor for PSCI development 
and cognitive decline over the course of 1 year. Further-
more, considering that AD-related cognitive decline 
is potentially delayed by pharmacological agents, our 
results provide evidence that anti-AD medications may 
be a strategy for preventing cognitive decline in patients 
with small subcortical infarctions.

Our first major finding was that Aβ positivity was 
29.7% in patients with small subcortical infarctions. This 
frequency was consistent with previous studies, which 
reported approximately 30% of Aβ positivity in patients 
with cerebral infarction and SIVD [17–19]. In terms of 

Aβ positivity in CU participants, our finding that 16.2% 
of age- and sex-matched CU participants without stroke 
had Aβ positivity was generally consistent with previ-
ous studies, which have shown that the range of Aβ 
positivity in CU Asians is 15~20% and CU Europeans is 
30~40% [5, 20–24]. A recent study has revealed that Aβ 
positivity in CU Asians (17.5% [30/171]) is lower than 
that in CU Europeans (30.4% [1250/3947], p = 0.002) 
[20]. Considering the lower frequency of Aβ positiv-
ity in CU Asians than in CU Europeans [5, 20–24], Aβ 
positivity in patients with small subcortical infarctions 
might be higher than that in normal elderly individu-
als. Several mechanisms have been proposed to explain 

Fig. 1  Cognitive trajectory according to Aβ positivity. The y-axis represents the K-MMSE score (a) or CDR-SOB score (b) 3 and 12 months after stroke. 
Thin and thick lines represent the scores of each patient and the predicted scores, respectively. Abbreviations: Aβ, amyloid-β; CDR-SOB, Clinical 
Dementia Rating-Sum of Box; K-MMSE, Korean version of the Mini-Mental Status Examination

Table 3  Association of Aβ positivity with cognitive trajectory

Abbreviations: Aβ Amyloid-β, CDR-SOB Clinical Dementia Rating-Sum of Box, CI confidence interval, K-MMSE Korean version of the Mini-Mental Status Examination
a Β was obtained by a linear mixed-effect regression analysis with participant as a random effect and Aβ positivity, time, and Aβ positivity × time as fixed effects along 
with age, sex, education years, hypertension, diabetes, and WMH severity

Aβ effect Time effect Aβ positivity × time

Βa (95% CI) p Βa (95% CI) p Βa (95% CI) p

K-MMSE − 2.218 (− 4.568, 0.133) 0.064 − 0.654 (− 1.375, 0.068) 0.074 − 1.164 (− 2.488, 0.159) 0.083

CDR-SOB 0.998 (0.068, 1.929) 0.036 0.154 (− 0.207, 0.515) 0.393 0.846 (0.185, 1.508) 0.014
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the relationship between small subcortical infarctions 
and Aβ deposition. Specifically, cessation of cerebral 
blood flow induces rapid Aβ deposition by decreasing 
the activity of Aβ degradation enzymes, such as neprily-
sin [4, 25]. Alternatively, patients with small subcortical 
infarctions may have a predisposition to cSVD, which is 
closely related to Aβ deposition. Several autopsy stud-
ies have demonstrated an overlap between Aβ and cSVD 
burdens [26, 27]. The interaction between Aβ and cSVD 
may be explained by the possibility that cSVD hampers 
Aβ clearance [28, 29].

We also found that patients with small subcortical 
infarctions had a higher frequency of hypertension and 
WMH burdens than CU participants without stroke. 
Considering the relationship between small subcortical 
infarction and cSVD, this finding was what we expected. 
Hypertension is the most important modifiable risk fac-
tor for cSVD [30].

Our second major finding was that Aβ positivity was 
predictive of PSCI development regardless of the cSVD 
burden, suggesting that coexistent AD pathology may play 
a vital role in the development of PSCI after stroke. This 
finding is comparable to previous findings that Aβ positiv-
ity is an important factor in PSCI development [18, 31, 32]. 
Recent studies have found that plasma AD biomarkers are 
associated with the development of PSCI. However, sev-
eral previous studies have shown that Aβ positivity is not 
associated with PSCI development [33–35]. This discrep-
ancy might be explained by the differences in the inclusion 
criteria of the study participants (small subcortical infarc-
tions without strategic lesions in the current study versus 
all etiologies of stroke or cerebral infarctions in the pre-
vious study). Patients with territorial infarction are more 
likely to have language problems and physical disabilities, 
which in turn lead to cognitive decline regardless of Aβ 
positivity. Additionally, patients with strategic infarctions 
are prone to cognitive impairment due to the infarcted 
lesion itself. Thus, these factors may override the effect of 
Aβ in a large proportion of stroke patients.

Although further studies are required to elucidate 
the mechanism underlying the relationship between 
Aβ positivity and PSCI, neuroinflammation may medi-
ate this association. Neuroinflammation is a common 
trigger for neuronal damage in individuals with Aβ and 
cerebral infarctions. It is well known that Aβ deposi-
tion in the brain starts to accumulate 10 years before the 
onset of clinical symptoms. After the deposition of Aβ, 
neuroinflammation may lead to neurodegeneration, a 
surrogate marker of cognitive decline, even in the non-
demented stage [36]. Specifically, microglial activation 
can switch from an anti-inflammatory phenotype (M2) 
to a pro-inflammatory phenotype (M1) during AD. Cer-
ebral ischemia-related excitotoxicity may also contribute 

to the activation of the inflammatory response, eventu-
ally resulting in neuronal damage. Thus, individuals 
with Aβ deposition may be more vulnerable to cerebral 
infarction-induced neuroinflammation, which leads to 
neurodegeneration. Alternatively, cerebral ischemia may 
aggravate the Aβ-related neuroinflammation.

We also found that pre-existing WMH and diabe-
tes were predictive of PSCI development. Although 
the association between pre-existing WMH and PSCI 
development was expected, this was again replicated in 
our groups, a finding suggestive of the importance of 
pre-existing WMH on cognitive impairment after small 
subcortical infarctions [37–39]. Regarding diabetes, this 
finding is consistent with those of previous studies [40, 
41]. Diabetes represents a metabolically unhealthy con-
dition and has been found to be associated with inflam-
mation, which may aggravate the neuronal damage after 
stroke [42].

Our final major finding was that Aβ positivity was asso-
ciated with faster deterioration in CDR-SOB for 1 year 
after stroke. In patients with small subcortical infarc-
tions, the relationship between Aβ positivity and long-
term cognitive trajectory remains controversial. Our 
findings suggest that Aβ positivity is associated with 
delayed-onset PSCI. Recent studies using plasma AD bio-
markers reported comparable results [32, 43]. Aβ positiv-
ity is an important predictor of SVID development and 
exerts a synergistic effect on cognitive decline with cSVD 
burden in patients with severe WMH burden, which 
is another form of cSVD [44]. However, Aβ positivity 
was not associated with a rapid decline in the K-MMSE 
scores. This may be explained by the characteristics of 
the PSCI and the intrinsic limitations of the K-MMSE. 
Because patients with PSCI are more vulnerable to cog-
nitive decline in frontal-executive function than in other 
cognitive domains, the K-MMSE may have underesti-
mated cognitive decline in the present study.

Limitations
In the present study, we investigated the association of 
Aβ deposition on PET with the development of PSCI 
and long-term prognosis in patients with small subcor-
tical infarction. However, our study had several limita-
tions that need to be addressed. First, the sample size is 
relatively small. Second, we could not assess long-term 
cognitive trajectories using a detailed neuropsychologi-
cal battery. However, this is mitigated to a certain extent 
by the fact that the CDR-SOB score is a well-validated 
outcome measure that is widely used in clinical trials of 
AD and PSCI. Third, the generalizability of the present 
study to all patients with stroke should be treated with 
caution because only participants with small subcorti-
cal infarctions were enrolled. Nevertheless, our study 
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provides a comprehensive understanding of the rela-
tionship between Aβ positivity and cognitive impair-
ment in patients with small subcortical infarctions.

Conclusions
In conclusion, Aβ positivity is an important predictor 
for the development of PSCI. Furthermore, preclinical 
AD pathology was predictive of a poor cognitive trajec-
tory. Therefore, anti-AD medications may contribute to 
delayed cognitive decline in patients with small subcor-
tical infarctions, although it is necessary to select the 
patient carefully with consideration for the MBs count 
and WMH severity.
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