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Abstract 

Background  Gene expression is dysregulated in Alzheimer’s disease (AD) patients, both in peripheral blood 
and post mortem brain. We investigated peripheral whole-blood gene (co)expression to determine molecular 
changes prior to symptom onset.

Methods  RNA was extracted and sequenced for 65 cognitively healthy F-PACK participants (65 (56–80) years, 34 
APOE4 non-carriers, 31 APOE4 carriers), at baseline and follow-up (interval: 5.0 (3.4–8.6) years). Participants received 
amyloid PET at both time points and amyloid rate of change derived. Accumulators were defined with rate 
of change ≥ 2.19 Centiloids. We performed differential gene expression and weighted gene co-expression network 
analysis to identify differentially expressed genes and networks of co-expressed genes, respectively, with respect 
to traits of interest (APOE4 status, amyloid accumulation (binary/continuous)), and amyloid positivity status, followed 
by Gene Ontology annotation.

Results  There were 166 significant differentially expressed genes at follow-up compared to baseline in APOE4 carriers  
only, whereas 12 significant differentially expressed genes were found only in APOE4 non-carriers, over time. Among 
the significant genes in APOE4 carriers, several had strong evidence for a pathogenic role in AD based on direct 
association scores generated from the DISQOVER platform: NGRN, IGF2, GMPR, CLDN5, SMIM24. Top enrichment 
terms showed upregulated mitochondrial and metabolic pathways, and an exacerbated upregulation of riboso-
mal pathways in APOE4 carriers compared to non-carriers. Similarly, there were 33 unique significant differentially 
expressed genes at follow-up compared to baseline in individuals classified as amyloid negative at baseline and posi-
tive at follow-up or amyloid positive at both time points and 32 unique significant differentially expressed genes 
over time in individuals amyloid negative at both time points. Among the significant genes in the first group, the top 
five with the highest direct association scores were as follows: RPL17-C18orf32, HSP90AA1, MBP, SIRPB1, and GRINA. 
Top enrichment terms included upregulated metabolism and focal adhesion pathways. Baseline and follow-up gene 
co-expression networks were separately built. Seventeen baseline co-expression modules were derived, with one sig-
nificantly negatively associated with amyloid accumulator status (r2 =  − 0.25, p = 0.046). This was enriched for protea-
somal protein catabolic process and myeloid cell development. Thirty-two follow-up modules were derived, with two 
significantly associated with APOE4 status: one downregulated (r2 =  − 0.27, p = 0.035) and one upregulated (r2 = 0.26, 
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p = 0.039) module. Top enrichment processes for the downregulated module included proteasomal protein catabolic 
process and myeloid cell homeostasis. Top enrichment processes for the upregulated module included cytoplasmic 
translation and rRNA processing.

Conclusions  We show that there are longitudinal gene expression changes that implicate a disrupted immune sys-
tem, protein removal, and metabolism in cognitively intact individuals who carry APOE4 or who accumulate in cortical 
amyloid. This provides insight into the pathophysiology of AD, whilst providing novel targets for drug and therapeutic 
development.

Keywords  Alzheimer’s disease, RNA sequencing, Blood, Transcriptome, Longitudinal study, Amyloid accumulation, 
APOE4

Background
The major hallmarks of Alzheimer’s disease (AD) are, by 
biological definition, the presence of amyloid-β plaques 
and tau tangles [1]. However, AD-related (brain) changes 
begin more than a decade prior to symptom onset in the 
preclinical or asymptomatic phase [2].

Recent genome-wide association studies (GWAS) have 
enhanced our knowledge of genetic risk factors, high-
lighting variants associated with AD risk beyond the 
apolipoprotein E ε4 (APOE4) gene [3–6]. Furthermore, 
it is possible to investigate changes in gene expression 
to provide further insight into AD-related changes at the 
functional level. These studies may enable recruitment 
stratification for clinical trials and early disease diagnosis 
or provide targets for further research for drug develop-
ment and treatments.

Post-mortem brain transcriptomic studies in AD cases 
versus controls have implicated several dysregulated 
pathways in AD, for example, DNA repair, mitochon-
drial pathways, inflammation, and calcium signalling 
[7–10]. Moreover, AD case–control studies have also 
investigated transcriptome changes in peripheral blood 
due to the less invasive nature of sampling (compared 
to cerebrospinal fluid collection) and the ability to per-
form longitudinal analyses, which is inherently impossi-
ble in post mortem studies. Such studies have observed 
similar transcriptomic changes as those in post mor-
tem brain studies, in addition to providing evidence for 
dysfunctions in pathways such as protein synthesis and 
apoptosis [11–13]. Importantly, these blood-based tran-
scriptomic analyses have also shown associations with 
changes in peripheral gene expression and AD-related 
brain changes, such as changes in hippocampal volume 
and amyloid deposition [14].

Transcriptomic analyses exclusively in the earliest 
asymptomatic disease stages in relation to AD geno-
types and phenotypes in a longitudinal study design are 
distinctly lacking. Thus, we aimed to investigate longi-
tudinal changes in peripheral blood RNA expression 
from individuals participating in the Flemish Prevent 
AD Cohort KU Leuven (F-PACK) to better understand 

the molecular changes occurring in asymptomatic AD. 
We hypothesise that expression profiles differ depend-
ing on genetic carrier status of APOE4 and with respect 
to amyloid accumulation.

Methods
Study participants
The Laboratory for Cognitive Neurology follows a 
cohort of 180 deeply phenotyped elderly individuals, 
who were cognitively intact at recruitment, known as 
F-PACK [15–17]. Individuals were recruited between 
2009 and 2015, in three waves of 60 participants, based 
on an inclusion age of 50–80  years, with a mini-men-
tal state examination (MMSE) score ≥ 27 and Clini-
cal Dementia Rating (CDR) score of 0. Furthermore, 
participants had to score within published norms on 
an extensive neuropsychological test battery [15, 18]. 
Exclusion criteria included a history of neurological or 
psychiatric illness, contraindication for magnetic reso-
nance imaging (MRI), focal brain lesions on MRI, his-
tory of cancer, or exposure to radiation one year prior 
to the baseline positron emission tomography (PET) 
scan. Recruitment was stratified for two genetic fac-
tors: APOE4 (present or absent) and brain-derived neu-
rotrophic factor (BDNF) 66 met (present or absent). 
This was carried out such that per 5-year age bin each 
factorial cell contained the same number of individu-
als matched for age, sex, and education. Participants 
are invited for 2-yearly neuropsychological evaluations 
over a 10-year period.

Sixty-five of these 180 F-PACK participants have 
received a baseline and follow-up 18F-Flutemetamol 
amyloid PET scan, structural MRI scan, and PAXgene 
RNA blood tube sampling (PreAnalytiX GmbH-BD Bio-
sciences, Mississauga, ON, Canada, time interval: 5.1 
(3.4–8.6) years).

The protocol was approved by the Ethics Committee 
University Hospitals Leuven. All participants provided 
written informed consent in accordance with the declara-
tion of Helsinki.
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Imaging
Structural MRI
At baseline and follow-up, participants received a high-
resolution T1-weighted structural MRI scan. A 3T 
Philips Achieva dstream 32-channel headcoil MRI scan-
ner was used (Philips, Best, The Netherlands). Sixty-five 
baseline and 57 follow-up scans were acquired using a 3D 
turbo field echo sequence: repetition time = 9.6 ms; echo 
time = 4.6 ms; flip angle = 8°; field of view = 250 × 250 mm; 
182 slices; voxel size 0.98 × 0.98 × 1.2 mm3. Five fol-
low-up scans were acquired using a three-dimensional 
magnetisation-prepared rapid gradient-echo sequence, 
due to being acquired as part of The Amyloid imaging 
to prevent Alzheimer’s disease (AMYPAD) study: rep-
etition time = 6.6  ms; echo time = 3.1  ms; flip angle = 9°; 
field of view = 270 × 252  mm; 170 slices; voxel size 
1.05 × 1.05 × 1.2 mm3. Three individuals refused a follow-
up MRI scan.

18F‑Flutemetamol PET
18F-Flutemetamol PET scans were acquired on a 16-slice 
Biograph PET/CT scanner (Siemens, Erlangen, Ger-
many) at baseline and follow-up, with a net injected 
intravenous activity of 149  MBq (127–162  MBq) and 
149  MBq (77–194  MBq), respectively, and an acquisi-
tion window of 90–120 min post-injection, as previously 
described [18–22]. Scans were reconstructed as frames 
of 5  min using ordered subsets expectation maximisa-
tion. All 65 baseline scans and 64 follow-up scans were 
reconstructed with 5 iterations and 8 subsets. One fol-
low-up scan was reconstructed with 4 iterations and 21 
subsets, due to being reconstructed as part of AMYPAD 
prior to a protocol amendment. The spatial resolution of 
the scanner is 4.6 mm full width at half maximum 1 cm 
off-centre measured with the NEMA protocol. All scans 
were smoothed with a 5 mm full width at half maximum 
isotropic Gaussian filter.

Statistical Parametric Mapping version 12 (Wellcome 
Trust Centre for Neuroimaging, London, UK, http://​
www.​fil.​ion.​ucl.​ac.​uk/​spm) running on MATLAB R2018b 
(Mathworks, Natick, MA, USA) was used to process the 
images, as described previously [18–22].

We used the Automated Anatomic Labelling Atlas 
(AAL) to calculate mean standardised uptake value ratios 
(SUVRs) in the spatially normalised images (voxel size: 
2 × 2 × 2 mm3) in a composite cortical volume of interest 
(SUVRcomp) within the acquisition window 90–110  min 
post injection to allow for conversion of SUVRcomp values 
to Centiloids (CL, below) [23]. This composite volume of 
interest included the following bilateral regions: frontal 
(AAL areas 3–10, 13–16, 23–28), parietal (AAL 57–70), 
anterior cingulate (AAL 31–32), posterior cingulate 
(AAL 35–36), and lateral temporal (AAL 81–82, 85–90) 

and was masked with the participant-specific grey mat-
ter segmentation map (intensity threshold = 0.3) [18, 24]. 
Cerebellar grey matter was used as the reference region 
to calculate SUVRcomp, defined as AAL areas 91–108, and 
was masked by the participant-specific grey matter map 
(intensity threshold = 0.3) [18]. SUVRcomp were then con-
verted to CL using the formula CL = 127.6 × SUVRcomp 
– 149 [23, 25]. We used an amyloid positivity threshold 
of CL = 23.5, a pathologically confirmed threshold for 
amyloid positivity [26]. Furthermore, to model amyloid 
change over the longitudinal time period, we calculated 
rate of change as follows: (follow-up CL – baseline CL)/
time interval (years). Amyloid accumulators were defined 
as having a rate of change at least 1.5 standard devia-
tions above the median rate of change of the subgroup of 
individuals who remained amyloid negative at both time 
points (CL rate of change ≥ 2.19).

RNA
Extraction and sequencing
RNA was extracted from PAXgene RNA blood tubes 
using the QIAGEN PAXgene Blood RNA Kit according 
to the manufacturer protocol. RNA concentration and 
quality were assessed prior to sequencing using a Nan-
oDrop Spectrophotometer (NanoDrop Technologies), 
and RNA Integrity Number was assessed with an Agilent 
2100 Bioanalyzer (Agilent Technologies).

RNA was sequenced in collaboration with the UZ/KU 
Leuven Genomics Core Facility. Sequencing libraries 
were prepared using the Lexogen QuantSeq 3′ mRNA-
Seq library prep kit as per the manufacturer protocol, 
with indexing to allow for multiplexing. Library quality 
and size were assessed using a Bioanalyzer RNA 6000 
nano or pico kit (depending on RNA concentration). 
Libraries were sequenced on an Illumina HiSeq4000 
instrument. Raw files were demultiplexed, by Genomics 
Core, into FastQ files for further analyses.

Quality control and processing
Processing was performed on the Vlaams Supercomputer 
Centrum (www.​vscen​trum.​be). TrimGalore (Version 
0.11.5) was used to remove adaptor sequences and low-
quality end bases from raw sequencing reads (https://​
www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​trimg​
alore/) using Cutadapt [27] and FastQC (https://​www.​
bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/). Reads 
were trimmed to remove the first 12 base pairs from the 
3′ end as per Lexogen’s recommendation (https://​www.​
lexog​en.​com/​quant​seq-​3mrna-​seque​ncing/). Reads less 
than 12 base pairs were removed. If necessary, FastQ files 
from the same sample were merged.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.vscentrum.be
https://www.bioinformatics.babraham.ac.uk/projects/trimgalore/
https://www.bioinformatics.babraham.ac.uk/projects/trimgalore/
https://www.bioinformatics.babraham.ac.uk/projects/trimgalore/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.lexogen.com/quantseq-3mrna-sequencing/
https://www.lexogen.com/quantseq-3mrna-sequencing/
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Processed FastQ files underwent selective align-
ment for quantification using Salmon (Version 1.0.0) 
and a decoy-aware transcriptome, created using the 
GENCODE Homo sapiens GRCH38.p13 genome 
assembly, reference genome hg38, and kmer size of 23 
[28–30]. Transcript abundances for each sample were 
then imported to R and summarised at the gene level in 
a txi object using tximport, with the countsFromAbun-
dance = ”no” argument used given the QuantSeq library 
prep was 3′ tagged [31].

Statistical analyses
Statistical analyses were performed in R version 4.2.1 
(2022–06-23; The R Foundation for Statistical Comput-
ing; https://​cran.r-​proje​ct.​org/).

F-PACK characteristics were stratified for APOE4 
status and assessed using Wilcoxon rank sum tests 
with continuity correction or Welch two-sample 
t-tests for continuous data, depending on normal-
ity (assessed using Shapiro–Wilk tests), and χ2 tests 
for categorical data. Only Trail Making Test part B 
divided by part A had a normal distribution after log 
transformation.

Filtering of the DESeqDataset
DESeq2 [32] was downloaded from Bioconductor and 
used to create a DESeqDataset object, using the DESe-
qDataSetFromTximport function and the imported 
txi object for expression analyses. Subsequently, our 
primary analyses investigated changes in single gene 
expression and our secondary analyses investigated 
changes in gene co-expression networks, as detailed 
below.

The DESeqDataset was subjected to filtering prior to 
any analyses. The following were removed: the top glo-
bin genes (ENSG00000206172.8, ENSG00000188536.13, 
ENSG00000244734.4, ENSG00000229988.2, ENSG00000223609.11, 
ENSG00000213931.7, ENSE00001494261.2, ENSG00000086506.3, 
ENSG00000213934.9, ENSG00000196565.15, ENSG00000206177.7, 
ENSG00000130656.6, ENSG00000206178.2) [33], genes that 
had zero counts across all samples, non-protein coding 
genes, and low count samples (samples with less than 
700,000 reads). Lowly expressed genes were also removed 
prior to individual analyses. In the case of a two-way 
differential expression analysis, genes with < 5 counts 
in > 50% of samples in both subgroups were removed; in 
the case of a differential expression analysis with a con-
tinuous outcome variable, genes with < 5 counts in > 30% 
of samples were removed; in the case of a weighted gene 
co-expression network analysis, genes with < 10 counts 
in > 90% of samples were removed.

Primary analyses: differential gene expression
In order to examine changes in single genes over time or 
between groups of interest, DESeq2 was used to perform 
differential gene expression analyses between traits of 
interest, with baseline age and sex included as covariates.

We first performed differential expression analyses 
of follow-up expression data versus baseline expression 
data in APOE4 carriers or non-carriers separately. To test 
whether there was a significant difference in the change 
in expression over time between the groups, we per-
formed a time-series paired analysis, including an inter-
action between APOE4 status and time point (binary). To 
further examine any significant differences, we also per-
formed cross-sectional differential expression analyses 
between APOE4 carriers and non-carriers at either base-
line or follow-up.

We then performed differential expression analyses as 
above with individuals classified by amyloid accumula-
tors (N = 12) and non-accumulators (N = 53). Further-
more, to determine whether there were differences in 
gene expression at baseline in response to future amyloid 
rate of change, we performed a differential expression 
analysis using baseline expression data with amyloid rate 
of change as a continuous outcome variable.

Finally, we grouped individuals based on amyloid 
positivity status: amyloid negative at both time points 
(N = 56); amyloid negative at baseline, positive at follow-
up or amyloid positive at both time points (N = 9) [16]. 
Then, we performed differential expression analyses as 
above, based on this amyloid positivity status.

In order to determine whether results from the dif-
ferential expression analyses were driven by cell-type 
contributions, we performed a cell deconvolution using 
CIBERSORT [34]. Normalised gene expression data 
were uploaded into the online tool as the “mixture file” 
and the LM22 dataset provided by CIBERSORT was 
used as the “signature matrix”. The algorithm was run in 
absolute mode, with the batch correction in “B-mode” 
and 100 permutations. Cell composition was then com-
pared between groups of interest as per each contrast 
from the above differential gene expression using paired 
or unpaired Wilcoxon rank sum tests or linear regres-
sion as appropriate. If a cell-type was significantly associ-
ated with a contrast, then differential expression analyses 
were repeated with the cell-type contribution included 
as an additional covariate. However, some cell estimates 
were essentially zero for all samples; therefore, these were 
removed (median contribution < 0.2).

The Benjamini–Hochberg procedure was used to 
adjust p-values for multiple comparisons per analysis 
[35]. Genes were considered significant if the false dis-
covery rate (FDR)-adjusted p-value was less than α = 0.05 

https://cran.r-project.org/
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and log2FoldChange was ± 1. Results were visualised 
using the EnhancedVolcano package [36].

Differentially expressed genes with  highest direct asso-
ciation score  For the significant differentially expressed 
genes in the above analyses, we determined the direct 
association score using “gene name” and “Alzheimer dis-
ease” as search terms using the DISQOVER platform 
(https://​www.​disqo​ver.​com/). Genes with the highest 
direct association score are those where there is strong-
est evidence of the gene being a direct target of AD from 
previously published literature.

Functional enrichment of differentially expressed genes  If 
there were significant differentially expressed genes 
(DEGs) in the differential expression analyses, functional 
enrichment was performed by means of gene set enrich-
ment analysis using Gene Ontology (GO, biological pro-
cesses (BP), molecular function (MF), cellular component 
(CC)) using clusterProfiler and enrichGO [37–40]. We 
chose this method to rank the genes as this is a threshold-
free method that ranks all the genes from the differential 
gene expression based on a gene significance score that 
combines the p-value and ± logFoldChange. This then 
determines whether groups of genes of an established 
gene set are randomly distributed or clustered at either 
end of the list. This allows the genes from the differen-
tial expression analysis to then be assigned to a group 
of upregulated or downregulated terms accordingly. All 
p-values of enriched terms were FDR-corrected and con-
sidered significant when pFDR < 0.05.

Secondary analyses: weighted gene co‑expression network 
analysis
In order to examine whether networks of co-expressed 
genes are significantly associated with traits of interest 
or change over time, the WGCNA package was used to 
perform weighted gene co-expression network analy-
sis (WGCNA) [41] of baseline and follow-up expression 
data separately. The variance stabilising transforma-
tion function was used on the filtered DESeqDataset, as 
above, and sample clustering was performed to check for 
outliers. A soft power threshold value was then derived, 
using the pickSoftThreshold function with default param-
eters, which was selected based on the scale inde-
pendence and mean connectivity outputs. The soft 
threshold was used to create a signed hybrid adjacency 
matrix using the adjacency function. This adjacency 
matrix was used to obtain a topological overlap matrix 
using the TOMsimilarity function. A dissimilarity meas-
ure was calculated as 1-(topological overlap matrix) and 
used to obtain modules of genes using the dynamic tree 
cutting method (cutreeDynamic function with default 

parameters). Dynamic modules were assigned a unique 
colour (unrelated to the properties of the module), and 
module eigengenes were obtained using the moduleEi-
gengenes function. The dissimilarity between module 
eigengenes was calculated as 1-cor(module eigengenes), 
which was used for clustering. Clusters per time point 
were merged using the mergeCloseModules function with 
cutHeight = 0.25, resulting in the final set of merged mod-
ules for each time point. Merged modules were then cor-
related with traits of interest (APOE4 status, amyloid rate 
of change as a continuous variable, amyloid accumulator 
status as a binary variable, amyloid positivity status as a 
binary variable as above) using a Pearson’s correlation 
analysis and visualised in a matrix using the labeledHeat-
map function. Modules were considered significant at 
uncorrected p < 0.05.

Note that DESeq2 performs an internal normalisa-
tion to avoid removing samples, which is not performed 
within the WGCNA package.

Functional analysis, hub gene detection and  module vis-
ualisation, and  transcriptional regulators  Functional 
analysis was performed on WGCNA modules that had 
significant associations with traits of interest using GO 
over-representation analysis. Over-representation analy-
sis was performed given this is a threshold-based method 
to detect over-represented enrichment terms among the 
genes within a specific module (pFDR-value < 0.05 and log-
2FoldChange ± 1).

Modules with significant associations with traits of 
interest were subjected to hub gene detection and net-
work visualisation. We considered hub genes to be 
those that were most highly interconnected with other 
genes within a given module; thus, the module eigen-
based connectivity measures were calculated, and genes 
were considered as highly interconnected if the eigen-
based connectivity was > 0.7 [42–45]. These genes were 
extracted and uploaded into STRING [46] to create a 
protein–protein interaction (PPI) network. This PPI net-
work was then exported to Cytoscape (version 3.7.1) for 
visualisation [47]. Using the CytoHubba plugin [48] in 
Cytoscape, the Maximal Clique Centrality (MCC) was 
calculated for each node and the top four intramodular 
hub genes were selected as those that had the highest 
MCC values. Furthermore, we performed a cell-type spe-
cific enrichment analysis of these highly interconnected 
genes using WebCSEA, to assess which cell-types the 
genes may be linked to [49].

We also extracted all module genes for those mod-
ules with significant associations with traits of inter-
est to determine potential upstream regulators using 
ChEA3 [50]. The top 10 regulators were visualised in 
the Bar Chart tab using the Mean Rank results (average 

https://www.disqover.com/
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integrated ranks across libraries: GTEx Coexpression, 
ReMAP CHiP-seq, Enrichr Queries, ENCODE CHiP-seq, 
ARCHS4 Coexpression, and literature CHiP-seq). Those 
regulators that remained when selecting only for ReMAP 
CHiP-seq, ENCODE CHiP-seq and literature CHiP-seq 
libraries were then considered as potential upstream reg-
ulators of the genes within a given module. Note that a 
lower score indicates a higher relevancy to the potential 
transcription factor.

Module preservation over time and consensus analyses  We 
used the modulePreservation function in order to deter-
mine whether modules of genes at baseline were preserved 
in follow-up expression data and vice versa. Baseline or 
follow-up co-expression modules were built as described 
in the above WGCNA and were used as the “reference set”. 
This reference set was subjected to 200 rounds of permuta-
tion testing in the “test set”, i.e. the other time point expres-
sion data, to assess whether the module node connectivity 
patterns are preserved. Z-scores were computed for each 
permutation during the preservation analysis (Z = observed 
– meanpermuted/SDpermuted), and these were combined into a 
composite Zsummary statistic to quantify the overall degree 
of preservation. A Zsummary < 2 suggests low preserva-
tion; > 2 Zsummary < 10 suggests moderate preservation; 
Zsummary > 10 suggests high preservation. To ensure mod-
ule reliability, each module was also subjected to permuta-
tion testing on the reference set. Lowly preserved modules 

(Zsummary < 2) were subjected to functional enrichment 
analyses as described above.

Further to the preservation analyses, we wanted to 
determine whether the genes within modules at baseline 
or follow-up were significantly overlapping using a con-
sensus analysis [41]. A soft threshold was chosen that was 
optimal for both expression datasets, which was used for 
consensus network construction using the blockwiseC-
onsensusModules function, with maxBlockSize = 20,000 
and default parameters. Following construction of the 
consensus modules, overlap of each pair of baseline-con-
sensus modules or follow-up-consensus modules were 
calculated, and the Fisher’s exact test was used to assign 
a p-value to each of these pairwise overlaps. The results 
were then visualised using the labeledHeatmap func-
tion. The stronger the red colour, the more significant 
the overlap of the set-specific module with the consensus 
module.

Results
F‑PACK characteristics
Seven (10.8%) F-PACK individuals were amyloid positive 
at baseline, which increased to nine (13.8%) at follow-up 
(Fig. 1). Twelve participants were amyloid accumulators, 
of which seven were APOE4 carriers. One individual had 
a CDR that had evolved to 0.5 at the time of follow-up 
amyloid PET, with corresponding MMSE score of 26. The 

Fig. 1  Amyloid change in F-PACK participants, stratified for APOE4 status. The dotted line represents the threshold for amyloid positivity = 23.5. 
Red = APOE4 carrier (N = 31), blue = APOE4 non-carrier (N = 34)
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full cohort characteristics can be found in Table 1, strati-
fied for APOE4 status.

Sequencing mapping and quality control
Importing of sequence data into R and summarising at 
the gene level resulted in 8,788,419 ± 4,243,830 reads per 
sample. After filtering and removal of globin genes, there 
were 4,201,718 ± 1,054,566 reads remaining per sample. 
There were 19,955 genes remaining after the removal of 
globin genes and non-protein coding genes for expres-
sion analyses.

Primary analysis: differential gene expression
APOE4 status
From the 11,727 genes that passed quality control, there 
were 201 significant differentially expressed genes at fol-
low-up compared to baseline found in APOE4 carriers, 
166 of which were “unique” to APOE4 carriers as they 
were not found to be significantly differentially expressed 
in APOE4 non-carriers (Fig. 2A). In contrast, there were 

47 significant differentially expressed genes in APOE4 
non-carriers at follow-up compared to baseline, 12 of 
which were unique to non-carriers (Fig.  2B). Thirty-five 
genes were significantly differentially expressed at follow-
up compared to baseline in both the APOE4 carrier and 
non-carrier analyses. The top unique five upregulated 
and downregulated genes are listed in Table 2 (see Sup-
plementary Tables 1 and 2 for full lists of genes). In the 
time-series paired analysis, there was only one significant 
differentially expressed gene that had a significantly dif-
ferent response to time when comparing APOE4 carri-
ers and non-carriers: LY75-CD302 (pFDR-value = 0.04, 
log2FoldChange =  − 4.78). In this analysis, the pFDR-
value denotes the significance of the difference between 
APOE4 and non-APOE4 expression profiles at follow-up 
compared to baseline, and the log2FoldChange is the rel-
ative difference between the log2FoldChange in APOE4 
carriers versus non-carriers. In the cross-sectional anal-
yses, from the 12,013 genes that passed quality control, 
there were no significant differentially expressed genes at 

Table 1  Characteristics of F-PACK participants stratified for APOE4 status. Data are reported as median and range (minimum to 
maximum) for continuous variables, and numerical for categorical variables. N = 65: ε2ε3 N = 5; ε2ε4 N = 1; ε3ε3 N = 29; ε3ε4 N = 28; ε4ε4 
N = 2

Abbreviations: AVF Animal Verbal Fluency Test, AVLT TL/DR Rey Auditory Verbal Learning Test total learning/delayed recall, BDNF brain-derived neurotrophic factor, 
BNT Boston Naming Test, BSRT TR/DR Buschke Selective Reminding Test total retention/delayed recall, CDR Clinical Dementia Rating scale, LVF Letter Verbal Fluency 
Test, MMSE Mini Mental State Examination, PALPA49 Psycholinguistic Assessment of Language Processing in Aphasia (PALPA) subtest 49, RPM Raven’s Progressive 
Matrices, TMT B/A Trail Making Test part B divided by part A

APOE4 non-carrier
(N = 34)

APOE4 carrier
(N = 31)

Statistics

Sex (male/female) 17/17 18/13 Χ2 = 0.16, p = 0.69

BDNF 66 met carriers (N) 18 16 Χ2 = 0, p = 1

Age (years) 68 (56–80) 69 (56–80) T =  − 0.42, p = 0.68

Education (years) 14 (8–20) 16 (9–23.5) T = 2.17, p = 0.03

MMSE 29.5 (27–30) 30 (28–30) W = 555.5, p = 0.68

CDR 0 0 NA

AVLT TL (/75) 46 (31–68) 46 (35–68) T = 0.32, p = 0.75

AVLT %DR 82.6 (30–107.7) 84.6 (58.3–107.7) W = 550, p = 0.77

BSRT TR (/12) 7.7 (5.6–10.8) 7.8 (4.9–10.3) T =  − 0.74, p = 0.46

BSRT DR (/12) 8 (2–12) 8 (3–12) W = 481.5, p = 0.55

BNT (/60) 57 (46–60) 57 (41–60) W = 530, p = 0.97

AVF (# words) 24 (16–33) 24 (18–38) T = 0.78, p = 0.44

LVF (# words) 35 (14–65) 38 (9–61) T = 0.72, p = 0.47

PALPA49 (/30) 28 (20–30) 27 (23–29) W = 468, p = 0.43

RPM (/60) 45 (22–57) 45 (22–57) W = 515.5, p = 0.88

TMT B/A 2.3 (1.3–4.8) 2.4 (1.0–4.8) T =  − 0.22, p = 0.83

Baseline Centiloid 4.6 (− 13.1–99.8) 7.7 (− 14.8–116.8) W = 620, p = 0.23

Baseline amyloid positivity (N) 3 (8.8%) 4 (12.9%) Χ2 = 0.02, p = 0.90

Follow-up Centiloid 3.1 (− 16.8–126.9) 7.9 (− 13.4–182.8) W = 666, p = 0.07

Follow-up amyloid positivity (N) 3 (8.8%) 6 (19.4%) Χ2 = 0.75, p = 0.39

Time interval (years) 5.7 (4.4–8.6) 4.5 (3.4–7.2) W = 272, p = 0.0008

Amyloid rate of change  − 0.15 (− 2.8–4.1) 0.86 (− 2.6–13.8) W = 672, p = 0.06

Amyloid accumulators (N) 5 (14.7%) 7 (22.6%) Χ2 = 0.25, p = 0.62
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baseline nor at follow-up when comparing APOE4 carri-
ers versus non-carriers (all pFDR-values > 0.05).

After performing the cell deconvolution (Supplemen-
tary Table 3), only CD8 T cells were significantly differ-
ent between APOE4 carriers and non-carriers at baseline. 
After including the cell-type contribution as a covariate 
in the repeated differential gene expression, the results 
did not change.

Amyloid rate of change
From the 11,727 genes that passed quality control, sixty-
two genes were found to be significantly differentially 
expressed at follow-up compared to baseline in amy-
loid non-accumulators (Supplementary Fig.  1). The top 
upregulated and downregulated genes can be found in 
Supplementary Table  4. There were no significant dif-
ferentially expressed genes in amyloid accumulators at 
follow-up compared to baseline. In the time-series paired 

analysis, there were no significant differentially expressed 
genes in amyloid accumulators versus non-accumulators 
in response to time. Similarly, no genes were significantly 
differentially expressed between amyloid accumulators 
and non-accumulators at baseline nor at follow-up from 
the 12,013 genes that passed quality control. Likewise, 
there were no differentially expressed genes in baseline 
expression data in response to amyloid rate of change as 
a continuous variable, from the 16,421 that passed quality 
control. All pFDR-values > 0.05.

Only CD4 memory resting T cells were significantly 
different at follow-up compared to baseline in amyloid 
non-accumulators, and results did not change when 
including this contribution as an additional covariate. 
Similarly, only monocytes (at baseline) were significantly 
associated with amyloid rate of change, and includ-
ing this contribution as an additional covariate did not 
change the results.

Fig. 2  Differentially expressed genes at follow-up compared to baseline stratified for APOE4 or amyloid positivity status. A Volcano plot showing 
the differentially expressed genes at follow-up compared to baseline in APOE4 carriers. B Volcano plot showing the differentially expressed genes 
at follow-up compared to baseline in APOE4 non-carriers. C Volcano plot showing the differentially expressed genes at follow-up compared 
to baseline in individuals amyloid positive at both time points or amyloid negative at baseline, positive at follow-up. D Volcano plot showing 
the differentially expressed genes at follow-up compared to baseline in individuals amyloid negative at both time points. Data points are 
coloured based on significance: grey = non-significant, blue = non-significant but with pFDR-value < 0.05, red = significant with pFDR-value < 0.05 
and log2FoldChange ± 1. APOE4 carriers N = 31, APOE4 non-carriers N = 34. Amyloid positive-positive or amyloid negative–positive N = 9, amyloid 
negative-negative N = 56
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Amyloid positivity status
From the 11,727 genes that passed quality control, 
107 genes were found to be significantly differentially 
expressed at follow-up compared to baseline in indi-
viduals who were amyloid negative at baseline and posi-
tive at follow-up or amyloid positive at both time points 
(Fig.  2C). Thirty-three of these were unique to these 
individuals, where the top five unique upregulated and 
downregulated genes can be found in Table 2. There were 
106 significant differentially expressed genes at follow-up 
compared to baseline in individuals classified as amyloid 
negative at both time points. Thirty-two of these genes 
were unique to amyloid negative-negative individuals, 
where the top five unique upregulated and downregu-
lated genes can be found in Table  2 (Fig.  2D). See Sup-
plementary Tables  5 and 6 for full lists of genes. In the 
time-series paired analysis, there were no significant 
differentially expressed genes found. Similarly, no genes 
were significantly differentially expressed in the cross-
sectional analyses at either time point from the 12,013 
genes that passed quality control.

After performing the cell deconvolution (Supplemen-
tary Table 3), only monocytes were significantly different at 

follow-up between individuals classified as amyloid nega-
tive at both time points versus individuals amyloid negative 
at baseline-positive at follow-up or positive at both time 
points. After including the cell-type contribution as a covar-
iate in the repeated analysis, the results did not change.

Differentially expressed genes with highest direct association 
score
From the 166 unique significant differentially 
expressed genes obtained from APOE4 carriers over 
time, we determined the top five genes that had the 
highest direct association score, based on “gene name” 
and “Alzheimer disease” as search terms (Supplemen-
tary Table 7). These top five genes were NRGN (direct 
association score = 0.11), IGF2 (direct association 
score = 0.09), GMPR (direct association score = 0.07), 
CLDN5 (direct association score = 0.05), and SMIM24 
(direct association score = 0.04). All genes were 
downregulated in APOE4 carriers at follow-up com-
pared to baseline: NRGN log2FoldChange =  − 1.16 
(pFDR = 1.2 × 10−4); IGF2 log2FoldChange =  − 1.24 
(pFDR = 5.7 × 10−3); GMPR log2FoldChange =  − 1.41 
(pFDR = 2.73 × 10−7); CDLN5 log2FoldChange =  − 1.21 

Table 2  Top unique differentially expressed genes stratified for APOE4 or amyloid positivity status at follow-up compared to baseline

The top five unique upregulated or downregulated genes are shown for each genotype group listed by log2FoldChange values. APOE4 carriers N = 31, APOE4 non-
carriers N = 34, amyloid negative–positive or amyloid positive-positive N = 9, amyloid negative-negative N = 56

Direction APOE4 carriers APOE4 non-carriers

Gene Log2FoldChange PFDR-value Gene Log2FoldChange PFDR-value

Up COX6C 1.68 3.6 × 10−8 ENSG00000173867 2.12 1.5 × 10−2

RPS27 1.55 9.7 × 10−8 ZNF208 1.15 6.0 × 10−4

TOMM5 1.54 2.6 × 10−3 - - -

COX7B 1.53 1.5 × 10−7 - - -

RPS17 1.47 7.0 × 10−8 - - -

Down LY75-CD302 − 5.60 1.8 × 10−10 ENSG00000241489 − 3.83 4.0 × 10−4

ENSG00000268614 − 1.65 3.8 × 10−3 SHISA7 − 1.51 7.6 × 10−4

YPEL4 − 1.62 3.4 × 10−6 WASF3 − 1.34 2.3 × 10−3

SHISA4 − 1.53 6.4 × 10−7 RNF208 − 1.33 5.6 × 10−4

SMIM24 − 1.52 9.1 × 10−7 PDGFA − 1.14 5.3 × 10−4

Amyloid negative–positive or positive-positive Amyloid negative-negative
Up RPL17-C18orf32 3.85 0.01 FAU 1.14 0.04

EEF1A1 2.17 0.03 RPS9 1.00 0.05

RPL14 1.43 0.02 - - -

RPS11 1.34 0.01 - - -

B2M 1.30 0.04 - - -

Down SELENBP1 − 2.88 0.04 NRGN − 2.44 0.03

PDZK1IP1 − 2.75 0.04 BCL2L1 − 2.28 0.03

GRINA − 2.07 0.05 ALAS2 − 2.20 0.05

NCF1 − 1.72 0.05 DMTN − 2.14 0.04

AKT2 − 1.60 0.02 PSMF1 − 2.07 0.03
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(pFDR = 5.57 × 10−5); SMIM24 log2FoldChange =  − 1.52, 
(pFDR = 9.07 × 10−7).

From the 33 unique significant differentially expressed 
genes obtained from amyloid negative–positive and amy-
loid positive-positive individuals over time, the top five 
genes with the highest direct association score were 
RPL17-C18orf32 (direct association score = 0.05, log2Fold-
Change = 3.85, pFDR = 0.01), HSP90AA1 (direct associa-
tion score = 0.02, log2FoldChange = 1.26, pFDR = 0.04), MBP 
(direct association score = 0.02, log2FoldChange =  − 1.18, 
pFDR = 0.02), SIRPB1 (direct association score = 0.01, log-
2FoldChange =  − 1.18, pFDR = 0.05), and GRINA (direct asso-
ciation score = 0.01, log2FoldChange = -2.07, pFDR = 0.05, 
Supplementary Table 8).

Functional enrichment gene set enrichment analysis
Between follow-up and baseline, there were 118 signifi-
cantly upregulated GO terms shared by both APOE4 car-
riers and non-carriers, which mainly included ribosomal 
terms (Supplementary Tables  9 and 10). APOE4 carriers 
had 40 significantly upregulated GO enrichment terms 
that were not significantly upregulated in non-carriers 
between time points. APOE4 non-carriers had six signifi-
cantly upregulated GO terms not significantly upregulated 
in APOE4 carriers between time points. There were 906 
significantly downregulated GO enrichment terms shared 
by both APOE4 carriers and non-carriers. APOE4 carriers 
had 220 significantly downregulated GO terms not signifi-
cantly downregulated in non-carriers, whilst APOE4 non-
carriers had 187 that reached significance, not significantly 
downregulated in carriers. The top five upregulated and 
downregulated terms can be seen in Table 3 (Supplemen-
tary Tables 11 and 12 for full lists of terms).

Amyloid non-accumulators had 182 significantly 
upregulated GO enrichment terms, and 1071 signifi-
cantly downregulated GO enrichment terms at follow-up 
compared to baseline (Supplementary Tables 13 and 14).

Between follow-up and baseline, there were 192 sig-
nificantly upregulated GO terms shared by both amy-
loid negative-negative and amyloid negative–positive/
amyloid positive-positive participants, which mainly 
included ribosomal and metabolism terms. Amyloid neg-
ative–positive/amyloid positive-positive individuals had 
20 significantly upregulated GO enrichment terms that 
were not significantly upregulated in amyloid negative-
negative participants between time points. Amyloid neg-
ative-negative participants had 14 unique significantly 
upregulated GO terms. See Supplementary Tables  15 
and 16 for full list of terms. There were 1301 significantly 
downregulated GO enrichment terms shared by both 
amyloid negative-negative and amyloid negative–posi-
tive/amyloid positive-positive participants. Amyloid neg-
ative–positive/amyloid positive-positive individuals had 

105 unique significantly downregulated GO terms, whilst 
amyloid negative-negative had 212 that reached signifi-
cance, at follow-up compared to baseline (Supplementary 
Tables  17 and 18). The top five unique upregulated and 
downregulated terms can be seen in Table 3.

Secondary analyses: weighted gene co‑expression network 
analysis
Baseline expression data
In order to determine whether networks of co-expressed 
genes were significantly associated with our traits of 
interest (APOE4 status, amyloid rate of change as a con-
tinuous variable, amyloid accumulator status as a binary 
variable, and amyloid positivity status), a baseline gene 
co-expression network was built using 9200 genes that 
passed quality control. Sample clustering highlighted two 
outliers, leaving 63 samples for network construction. 
A soft power threshold of 11 was selected based on the 
scale independence and mean connectivity (Supplemen-
tary Fig. 2A, B). Using the dynamic tree cutting method, 
28 co-expression modules were derived ranging in size 
from 53 to 4538 genes. Similar modules were merged 
resulting in the final 17 co-expression modules (Supple-
mentary Fig. 2C, D).

One module was significantly associated with amy-
loid accumulator status (blue module, suppressed net-
work: r2 =  − 0.25, p = 0.046, Fig.  3A), meaning amyloid 
accumulators had a suppression of this module com-
pared to non-accumulators. Top GO enrichment pro-
cesses included proteasomal protein catabolic process 
(GO:0,010,498, pFDR-value = 3.4 × 10−9), proteasome-
mediated ubiquitin-dependent protein catabolic pro-
cess (GO:0,043,161, pFDR-value = 2.5 × 10−7), and myeloid 
cell development (GO:0,061,515, pFDR-value = 5.3 × 10−5, 
Fig.  3B, Supplementary Table  19). Highly interconnected 
genes were extracted and used to create the PPI network 
in Fig. 3C. From these genes, the top four hub genes were 
selected with the highest MCC: SLC4A1 (MCC = 3224), 
ALAS2 (MCC = 2389), EPB42 (MCC = 2377), and AHSP 
(MCC = 2235). Furthermore, cell-type-specific enrichment 
analysis of these highly interconnected genes showed that 
they were mainly related to erythrocytes (Supplementary 
Fig. 3). Upstream regulators of this module included KLF1 
(score = 1.4), GATA1 (score = 3.0), TAL1 (score = 3.3), 
GFI1B (score = 12.4), and MXI1 (score = 15.8). Further-
more, this module contained SHISA4 and SMIM24, sig-
nificantly downregulated genes in the primary analysis 
in response to APOE4 carriership, and SELENBP1, PDZ-
KIP1, and GRINA, significantly downregulated genes in 
the primary analyses in response to a positive amyloid 
status (Table 2). No modules were significantly correlated 
with APOE4 status, amyloid rate of change as a continuous 
variable, or amyloid positivity status.
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Follow‑up expression data
To determine whether co-expression networks at fol-
low-up were associated with our traits of interest, a 
gene co-expression network was built using 9200 genes 

that passed quality control from the follow-up expres-
sion data. Sample clustering highlighted two outliers, 
leaving 63 samples for network construction. A soft 
power threshold of five was selected based on the scale 

Table 3  Top unique significant Gene Ontology terms stratified for APOE4 or amyloid positivity status at follow-up compared to 
baseline

The top five significant upregulated or downregulated gene set enrichment analysis GO are shown for each genotype group listed by pFDR-values, if the term had 
a pFDR-value < 0.01. APOE4 carriers N, 31, APOE4 non-carriers N, 34, amyloid negative–positive or amyloid positive-positive N, 9, amyloid negative-negative N, 56. 
Abbreviations: CC cellular compartment, BP biological processes, MF molecular function. The normalised enrichment score accounts for size differences in gene 
sets and correlations between gene sets and the expression dataset to allow direct comparisons across gene set results. A negative score means the enrichment is 
downregulated

Direction APOE4 carriers APOE4 non-carriers

GO identifier 
(Ontology)

Description pFDR-value Normalised 
enrichment 
score

GO identifier 
(Ontology)

Description pFDR-value Normalised 
enrichment 
score

Up GO:0,005,759 (CC) Mitochondrial 
matrix

7.3 × 10−7 1.73 - - - -

GO:0,006,091 (BP) Generation 
of precursor 
metabolites 
and energy

8.5 × 10−4 1.52 - - - -

GO:0,032,543 (BP) Mitochondrial 
translation

1.0 × 10−3 1.88 - - - -

GO:0,005,689 (CC) U12-type spliceo-
somal complex

1.4 × 10−3 1.97 - - - -

GO:0,006,457 (CC) Protein folding 2.0 × 10−3 1.64 - - - -

Down GO:0,099,537 (BP) Trans-synaptic 
signalling

1.1 × 10−5  − 1.68 GO:0,110,020 (BP) Regulation 
of actomyosin 
structure organi-
sation

8.1 × 10−5  − 1.99

GO:0,099,177 (BP) Regulation 
of trans-synaptic 
signalling

2.3 × 10−4  − 1.65 GO:0,032,231 (BP) Regulation 
of actin filament 
bundle assembly

1.2 × 10−4  − 1.95

GO:0,016,323 (CC) Basolateral 
plasma mem-
brane

2.4 × 10−4  − 1.78 GO:0,051,492 (BP) Regulation 
of stress fibre 
assembly

1.3 × 10−4  − 1.97

GO:0,099,003 (BP) Vesicle-mediated 
transport in syn-
apse

7.1 × 10−4  − 1.76 GO:0,046,939 (BP) Nucleotide phos-
phorylation

2.8 × 10−4  − 1.86

GO:0,042,581 (CC) Specific granule 8.0 × 10−4  − 1.71 GO:0,006,165 (BP) Nucleoside 
diphosphate 
phosphorylation

4.7 × 10−4  − 1.88

Amyloid negative–positive and amyloid-positive Amyloid negative-negative
Up GO:0,046,034 (BP) ATP metabolic 

process
6.5 × 10−3 1.50 GO:0,071,013 (CC) Catalytic step 2 

spliceosome
7.8 × 10−3 1.66

GO:0,005,925 (CC) Focal adhesion 6.5 × 10−3 1.40 - - - -

GO:0,030,055 (CC) Cell-substrate 
junction

9.91 × 10−3 1.40 - - - -

- - - - - - - -

- - - - - - - -

Down - - - - GO:0,014,855 (BP) Striated muscle 
cell proliferation

6.81 × 10−3  − 1.80

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -
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independence and mean connectivity (Supplementary 
Fig.  4A, B). Using the dynamic tree cutting method, 46 
co-expression modules were derived ranging in size from 
32 to 1668 genes. Similar modules were merged resulting 
in the final 35 co-expression modules (Supplementary 
Fig. 4C, D).

Two modules were significantly associated with 
APOE4 status: blue (downregulated network, r2 =  − 0.27, 
p = 0.035) and turquoise (upregulated network: r2 = 0.26, 
p = 0.039, Fig.  4A). Top GO enrichment processes for 
the blue module included proteasomal protein catabolic 
process (GO:0,010,498, pFDR-value = 1.9 × 10−7) and 
proteasome-mediated ubiquitin-dependent protein cat-
abolic process (GO:0,043,161, pFDR-value = 9.0 × 10−6, 
Fig.  4B, Supplementary Table  20). Highly intercon-
nected genes were extracted and used to create the 
PPI network in Fig.  4C. From these genes, the top 
four hub genes were selected with the highest MCC: 

SLC4A1 (MCC = 2830), EPB42 (MCC = 1969), ALAS2 
(MCC = 1929), and KLF1 (MCC = 1844). Furthermore, 
cell-type-specific enrichment analysis of these highly 
interconnected genes showed that genes were mainly 
related to erythrocytes, as well as further cell-types 
such as megakaryocyte, haematopoietic stem cell, and 
epithelial cell (Supplementary Fig. 5). Upstream regula-
tors of this module included KLF1 (score = 2.2), GATA1 
(score = 2.5), TAL1 (score = 2.7), GFI1B (score = 16.2), 
MXI1 (score = 18.8), and MAZ (score = 39.6). Moreover, 
this module contained SHISA4 and SMIM24, signifi-
cantly downregulated genes in the primary analysis in 
response to APOE4 carriership, and SELENBP1, PDZ-
KIP1, and GRINA, significantly downregulated genes in 
the primary analyses in response to a positive amyloid 
status (Table 2). These genes were also found to be sup-
pressed in the baseline WGCNA in response to amyloid 
rate of change.

Fig. 3  WGCNA of baseline expression data. A Correlation heatmap of traits of interest with WGCNA modules depicting the Pearson’s correlation 
coefficient with the p-value in brackets. B Gene ontology enrichment terms derived from over-representation analysis. C Protein–protein interaction 
network of highly interconnected genes with hub genes shaped as hexagonal
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Top GO enrichment processes for the turquoise mod-
ule included cytoplasmic translation (GO:0,002,181, 
pFDR-value = 3.1 × 10−49) and ribonucleoprotein com-
plex biogenesis (GO:0,022,613, pFDR-value = 1.2 × 10−26, 
Fig.  4D, Supplementary Table  21). Highly intercon-
nected genes were extracted and used to create the 
PPI network in Fig. 4E. From these genes, the top four 
hub genes were selected with the highest MCC: RPL22 
(MCC = 9.2 × 1013), RPS15A (MCC = 9.2 × 1013), RPL32 
(MCC = 9.2 × 1013), and RPLP0 (MCC = 9.2 × 1013). 
Furthermore, cell-type-specific enrichment analysis 
of these highly interconnected genes showed that they 
were related to T cells, followed by epithelial cells, 
monocytes, erythroid progenitor cell, and B cells. There 
were also other cell-types enriched, although to a lesser 
extent, such as natural killer cell, neutrophil and den-
dritic cell (Supplementary Fig.  6). ChEA3 identified 
CEBPZ as an upstream regulator (score = 48.6). Lastly, 
this module contained COX6C, RPS27, COX7b, and 

RPS17, which were significantly upregulated genes in 
the primary analysis in response to APOE4 carriership, 
as well as RPL17-C18orf32, EEF1A1, RPL14, RPS11, and 
B2M, which were significantly upregulated genes in the 
primary analysis in response to a positive amyloid status 
(Table 2).

No modules were significantly correlated with amyloid 
rate of change as a continuous variable, amyloid accumu-
lator status, or amyloid positivity status.

Module preservation over time and consensus analyses
All baseline WGCNA co-expression modules were well 
preserved in follow-up expression data (Zsummary > 10, 
Fig.  5A). Five follow-up co-expression modules were 
moderately preserved in baseline expression data (> 2 
Zsummary < 10). All other modules were well preserved 
(Fig.  5B). No modules were lowly preserved in either 
analysis.

Fig. 4  WGCNA of follow-up expression data. A Correlation heatmap of traits of interest with WGCNA modules depicting the Pearson’s correlation 
coefficient and the p-value in brackets. B Gene ontology enrichment terms derived from over-representation analysis for the blue module. 
C Protein–protein interaction network of highly interconnected genes with hub genes shaped as hexagonal for the blue module. D Gene 
ontology enrichment terms derived from over-representation analysis for the turquoise module. E Protein–protein interaction network of highly 
interconnected genes with hub genes shaped as hexagonal for the turquoise module. Note the differing sliding colour scale for the enrichment 
plots
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A soft threshold of 5 was chosen for consensus network 
construction based on the mean independence and scale 
connectivity (Supplementary Fig. 7A), which resulted in 
27 consensus modules (Supplementary Fig.  7B). Pair-
wise Fisher’s exact tests showed that the genes within the 
blue WGCNA module at baseline and the blue WGCNA 
module at follow-up were significantly overlapping, as 
shown by the consensus yellow module -log(p) values of 
383 and 328, respectively, in Fig. 5B, C.

Discussion
Our study highlighted that peripheral whole-blood RNA 
sequencing detects longitudinal differences in single 
gene expression, as well gene co-expression networks, 
enriched for upregulated mitochondrial and ribosomal 
pathways and downregulated immune and proteasomal 
pathways, in those individuals that are at risk of devel-
oping AD (APOE4 carriers or amyloid accumulators). 
Several of the genes and pathways highlighted from this 
study have already been implicated in AD pathogenesis 
from both post mortem brain and peripheral blood case–
control studies.

Studies investigating gene expression allow for study-
ing the functional changes at the RNA level occurring as 
a result of AD. Many transcriptional studies have been 
performed in case–control datasets using post mortem 
brain tissue or cell lines, highlighting dysfunctions in 
calcium signalling, (neuro)inflammation, metabolism, 
ribosomal function, and DNA repair in cases compared 
to controls [7–9, 51–54]. More recently, blood has been 
proposed as a surrogate tissue for transcriptomic stud-
ies since gene expression in the blood has a large over-
lap with gene expression in the brain [55, 56]. Moreover, 
blood is more easily obtainable than brain tissue and ena-
bles serial studies. Similarly, AD case–control peripheral 
blood studies have shown that AD cases have dysregula-
tion in mitochondrial and ribosomal pathways, as well as 
apoptosis [11, 57].

A recent study investigating gene expression differ-
ences using lymphoblastoid cells and brain tissue found 
that there was a higher number of differentially expressed 
genes in Alzheimer’s cases (sporadic early-onset or auto-
somal dominant AD) compared to controls [58]. Enrich-
ment for these differentially expressed genes showed 
downregulation of mitochondrial pathways and synap-
tic signalling, as well as upregulation of immune-related 
pathways. Our study can be considered an extension of 
this study, but in blood and in the asymptomatic phase. 
Despite the cell-types that were significantly associated 
with our differential gene expression contrasts, when 
we accounted for these in the analyses, our results were 
not influenced. Therefore, our study complements these 
previous results by also highlighting a higher number of 

significant differentially expressed genes in those individ-
uals at a higher risk of developing AD, which are enriched 
for similar pathways. Specifically, we found 201 signifi-
cant differentially expressed genes in APOE4 carriers at 
follow-up compared to baseline (47 in non-carriers), 121 
of which were downregulated. Unique downregulated 
terms in APOE4 carriers were enriched for trans-syn-
aptic signalling, similar to the previous study. Further-
more, unique upregulated terms in APOE4 carriers were 
enriched for mitochondrial pathways and metabolism, 
which were also upregulated pathways observed in indi-
viduals classified as amyloid negative at baseline and pos-
itive at follow-up or positive at both time points. These 
results, therefore, suggest that the synaptic and metabolic 
changes present in those with AD are already occurring 
in those at a higher risk of developing the disease (given 
they carry APOE4 and accumulate in amyloid) prior to 
developing symptoms. These results observed in our 
study are corroborated by altered glucose metabolism in 
AD case–control studies, as measured with fluro-2-de-
oxyglucose PET, for example, perhaps due to impaired 
mitochondrial machinery, or increased oxidative stress 
(as reviewed in [59]). Similarly, a recent neuropathologi-
cal study analysing brain homogenate from the AD spec-
trum (individuals without neurodegeneration, preclinical 
AD, and symptomatic AD) found that vesicle endocyto-
sis and the secretory pathway are key pathways that are 
altered in early AD pathogenesis [60]. We confirm the 
disruption of such pathways that are significantly down-
regulated in APOE4 carriers (vesicle-mediated transport 
in synapse) that were not significantly downregulated in 
non-carriers. It is important to note, however, that these 
changes may also be present in non-carriers, but below 
the threshold for detection.

In addition to the similar enrichment pathways found 
in case–control studies and our differential gene expres-
sion results, some of the specific top unique significant 
differentially expressed genes within these enrichments 
found in APOE4 carriers have already been implicated 
in AD. COX6C and COX7b are part of Complex IV in 
the electron transport chain of oxidative phosphoryla-
tion and have been found to be downregulated in blood 
of AD cases compared to controls [61]. We found an 
upregulation of these genes, potentially due to the dif-
ferent stages of AD being analysed: we are examining 
changes in an asymptomatic population, which may be 
potentially highlighting an upregulation prior to symp-
tom onset, followed by a downregulation once the dis-
ease has progressed. However, with our data, we cannot 
exclude that with AD cases results may be different. 
RPS27 and RPS17 are part of the 40S ribosomal subunit 
and were previously found to be differentially expressed 
in AD cases compared to controls, where they were also 
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identified as potential hub genes in a blood-based tran-
scriptomic analysis [57]. YPEL4, which was downregu-
lated in APOE4 carriers, is predicted to enable metal ion 
binding activity and has recently been found to be down-
regulated in AD brain compared to controls [62]. Finally, 
SHISA4, a component of membranes, was another gene 
downregulated in APOE4 carriers that has recently been 
found to be downregulated in mildly cognitively impaired 
and AD individuals in blood expression analyses using 
Alzheimer’s Disease Neuroimaging Initiative data [63].

Similarly, some of the genes that were significantly 
upregulated or downregulated in individuals classified 
as amyloid negative at baseline and positive at follow-up 
or amyloid positive at both time points have also been 
implicated in the AD literature. EEF1A is a eukaryotic 
elongation factor that has previously been shown to have 
reduced expression in AD brain regions such as CA1 
[64]. RPL14 was identified recently as a potential hub 
gene in AD patients compared with controls using tem-
poral cortex Gene Expression Omnibus expression data 
[65]. RPS11 was shown to be a methylation site in AD 
[66], which has more recently also been found to also be 
a methylation site in a Chinese population [67], thereby 
potentially affecting subsequent gene expression. Cogni-
tion has been shown to be negatively regulated by B2M 
in both healthy ageing and in stages of cognitive decline, 
including dementia [68]. Finally, NCF1 was significantly 
overexpressed in blood of AD patients, which may be 
involved in an increased production of reactive oxygen 
species in AD [69].

Those significant differentially expressed genes 
described above are selected based on statistical results 
from the paired expression analysis, i.e. having the larg-
est log2FoldChange. However, an alternative method for 
gene selection can be by using direct association scores, 
which are generated by relying on known associations 
between a given gene and disease from a priori literature 
evidence, e.g. using Open Targets. The top significant dif-
ferentially expressed genes in APOE4 carriers with the 
highest direct association scores generated from the DIS-
QOVER platform were NRGN, IGF2, GMPR, CLDN5, 
and SMIM24. NRGN has been thoroughly studied as 
a potential AD biomarker in blood and cerebrospinal 
fluid [70, 71]. These studies show that NRGN levels are 
increased in AD individuals compared with controls, 

whilst in the current gene expression study levels were 
decreased. IGF-2 has been implicated in AD for several 
decades based on an AD mouse model study [72], where 
it was shown to have a critical role in memory consolida-
tion. This study also showed that IGF-2 expression was 
decreased in the hippocampus of those individuals with 
AD, similar to the decreased expression we observe in 
APOE4 carriers. GMPR is involved in nucleotide metab-
olism and was found to increase as AD progresses in a 
post mortem brain case–control differential expression 
analysis study [73]. CLDN5 is an important component 
of endothelial cell tight junctions constituting the blood 
brain barrier. In a recent study, CLDN5 methylation 
has been shown to be associated with cognitive decline 
in the Religious Order Study-Rush Memory and Aging 
Project study [74]. Hypermethylation of CDLN5 occurs 
in dorsolateral prefrontal cortex in association with epi-
sodic memory and working memory decline; however, 
this association was only partly mediated by AD neuro-
pathological changes. Furthermore, this also occurred in 
cases with low or no Alzheimer’s neuropathology, and 
there was no relationship between the hypermethylation 
and gene expression. Here, we show decreased expres-
sion levels of CLDN5 over time in APOE4 carriers, some 
of whom have brain amyloid pathology. Lastly, SMIM24 
is predicted to be a membrane component, where it was 
identified as a genome-wide significant single nucleotide 
polymorphism in an Alzheimer’s genome-wide associa-
tion study [75].

Of the significant differentially expressed genes in 
the amyloid status-based primary analysis, the top five 
genes with highest direct association score were RPL17-
C18orf32, HSP90AA1, MBP, SIRPB1, and GRINA. In 
a recent AD case–control study characterising hip-
pocampal subfields, stereological data showed that the 
chaperone HSP90AA1 protein was downregulated in 
AD and associated with astrocytes, where the authors 
hypothesised that this is related to chaperone-mediated 
autophagy of amyloid and tau within AD [76]. Disrup-
tion of cerebral white matter in AD is not a new concept, 
where myelin breakdown is often observed. An AD post 
mortem brain study has previously shown that the pro-
tein encoded by MBP (myelin basic protein) was located 
at the margins of amyloid plaques, suggesting an interac-
tion between the two. Furthermore, the authors provide 

Fig. 5  Module preservation and consensus of baseline or follow-up co-expression modules. Zsummary scores of A baseline WGCNA modules 
in follow-up expression data and B follow-up co-expression modules in baseline expression data. A Zsummary < 2 suggests low preservation 
(below blue dotted line); > 2 Zsummary < 10 suggests moderate preservation; Zsummary > 10 suggests high preservation (above green dotted 
line). Correspondence of C baseline set-specific modules or D follow-up set-specific modules with consensus modules. Each row is the set-specific 
module and each column is a consensus module. The more red the cell, the more significant the Fisher’s exact p-value (encoded by -log(p) 
signifying the gene overlap. For module labels in plots A and B for the preservation analyses please see y-axes module

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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evidence of myelin injury in the AD brain by means 
of increased levels of LC3B and MBP [76]. The SIRBP1 
protein has been shown to be upregulated in AD brain, 
where knockdown in primary microglial cells resulted 
in impaired amyloid phagocytosis, highlighting a poten-
tial role for this protein in amyloid removal in AD [77]. 
Finally, GRINA encodes an NMDA receptor subunit, dys-
regulation of which has been linked to AD via calcium 
signalling alterations, as well as activation of NMDA 
receptors resulting in amyloid-induced mitochondrial 
toxicity and neuronal dysfunction when this activation is 
mediated by amyloid (reviewed in [78]).

Aside from those top genes discussed above, there 
were also other significant differentially expressed genes 
associated with AD found in APOE4 carriers that had 
direct association scores not present in the results. These 
did not meet the requirements for being top genes, but 
nonetheless they have previously been implicated in AD. 
Based on gene expression data from brain tissue in cases 
versus controls, Brooks and Mias (2019) derived the top 
25 upregulated or downregulated genes [79]. Among the 
latter list, three genes were also present in the current 
analysis: LSM3 (ranked 14th), COX7B (ranked 8th) and 
MRPS18C (ranked 13th) [79]. Whilst they are downreg-
ulated in Alzheimer’s brain tissue, all three were signifi-
cantly upregulated in blood from baseline to follow-up 
in APOE4 carriers. Furthermore, based on open gene 
expression datasets, Tao et al. (2020) found several major 
pathogenic genes in AD and mild cognitively impaired 
individuals that were also bridge genes [80]. Four of these 
were significantly upregulated over time in APOE4 car-
riers in the current study: LSM3, RPS3A, S100A8, and 
SNRPG. All four genes are closely related to spliceoso-
mal and ribosomal function. Despite the expression of 
these four genes being decreased in the previous study, 
the expression of these genes in the current study was 
increased in the asymptomatic APOE4 carriers over time.

It must be noted, however, that there was only one gene 
significantly differentially expressed in the time-series 
paired analysis involving APOE4 carriers and non-car-
riers: LY75-CD302, a readthrough transcript of the two 
neighbouring parent genes LY75 and CD302. Although 
both parent genes have known roles (LY75 in the immune 
response as an endocytic receptor [81], and CD302 in cell 
migration and endo- and phagocytosis as a lectin recep-
tor [82]), the readthrough transcript is less well anno-
tated. Similarly, the readthrough gene RPL17-C18orf32 
was obtained as a top differentially expressed gene in the 
amyloid-related analysis. Although RPL17 is known to 
encode a protein that is part of the 60S ribosomal subunit 
[83], and C18orf32 is thought to activate the NF-kappa-B 
signalling pathway [84], the readthrough transcript is also 
less well annotated. Readthrough genes are a relatively 

new phenomenon [85], and their functions are not yet 
well known or documented. Furthermore, with the short-
read 3′ QuantSeq library prep and sequencing we per-
formed, it is difficult to attribute readthrough genes when 
mapping. Therefore, these results should be interpreted 
with care.

It remains to be said that several studies based on gene 
expression analyses of brain samples of AD cases and 
controls, e.g. based on the Gene Expression Omnibus 
data, did not show any obvious overlap in terms of gene 
expression with our study [86]. This is also true for some 
of the studies based on AD case–control brain studies 
from academic cohorts [87]. This may be due to the dif-
ference in study population used here compared to those 
published (cognitively intact versus patient cohorts), the 
difference between brain and blood samples, and the 
challenges of replicability in complex datasets.

Those genes and pathways that are shared with 
APOE4 carriers and non-carriers have more signifi-
cant pFDR-values and larger log2FoldChange values in 
APOE4 carriers. This dysregulation from our differen-
tial gene expression analyses was substantiated by the 
follow-up WGCNA analyses. The follow-up WGCNA 
highlights a significant activation of the turquoise mod-
ule in APOE4 carriers compared to non-carriers at fol-
low-up. This module was enriched for similar pathways 
as with the differential gene expression analysis (oxida-
tive phosphorylation, cytoplasmic translation), where 
hub genes were centred around ribosomal genes, high-
lighting ribosomal activity dysregulation in an early 
disease stage. Furthermore, CEBPZ was determined to 
be a potential upstream regulator of this module. Other 
members of the CEBP family have been implicated in 
AD, where it is suggested they play a role in altered 
transcription regulation (also in response to amyloid) 
[88–90]. Our results overall suggest that carriership of 
the APOE4 AD risk allele has an exacerbating effect on 
single gene and network expression changes over time 
in a stage where individuals are still cognitively intact.

We have shown that with amyloid accumulation as a 
binary trait we see a significant downregulation of the 
blue module at baseline in those that are categorised as 
(future) accumulators. This module was enriched for 
proteasomal protein catabolic processes and myeloid 
cell development. This suggests that those individuals 
who will accumulate amyloid already have downregu-
lated proteasomal processing and a reduced immune 
system function prior to this future increase. In particu-
lar, proteasomal and ubiquitin processes have already 
been suggested to be dysregulated in AD [10, 91, 92]. 
Hub gene analysis of this module highlighted several 
genes to be centred around erythrocytes and haemoglo-
bin. To accompany this, the cell-type enrichment also 
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showed that the genes within this module were related 
to erythrocytes, suggesting an association with amyloid 
accumulation. This association was also observed with 
APOE4 carriership, given the profile of the blue module 
at follow-up was largely similar. Altered metabolism of 
erythrocytes has been suggested to be a potential AD 
risk factor, given there are cerebral blood flow altera-
tions, vascular pathology, and altered glucose metabo-
lism associated with AD (reviewed in [93, 94]). Our 
results do support altered erythrocyte function in our 
cohort of cognitively intact older adults, some of whom 
are already presenting with abnormal brain amyloid 
levels. Furthermore, the identified transcription factors 
are also involved in erythroid development, differentia-
tion, or maturation: GATA1 and TAL1 were identified 
as potential upstream regulators, where both have been 
previously implicated as AD risk genes in a genome-
wide meta-analysis [95]. Furthermore, GFI1B has been 
shown to be downregulated in an AD in silico study in 
response to epigenetic modifications [96]. This subse-
quently resulted in interrupted gene expression, further 
highlighting the importance of upstream regulators in 
differential gene expression [96]. Lastly, MXI1 has been 
recently labelled an age-related gene associated with AD 
that had a high performance at discriminating between 
AD cases from controls and correlated with pathological 
progression of AD by means of tau load [97]. Altogether, 
these results have shown the dysregulation of known 
AD-associated genes and pathways, as well as regulatory 
transcription factors in asymptomatic individuals.

The differential gene expression and WGCNA results 
are not independent: many of the genes present in the pri-
mary analyses in response to APOE4 carriership or amyloid 
positivity were also present in the modules in the second-
ary network analyses. This shared profile of transcription 
dysregulation is further evident when comparing the genes 
and enrichment profiles of the blue module at baseline and 
the blue module at follow-up. At baseline, the blue module 
was significantly correlated with amyloid accumulator sta-
tus, whereas at follow-up, the blue module was significantly 
correlated with APOE4 status. The baseline blue module 
was also the most well-preserved module in follow-up 
expression data and vice versa, as observed in the preser-
vation analyses. This was further substantiated by the con-
sensus analyses, in which there is a large overlap of genes 
in both blue modules, shown by the significant pairwise 
overlap. This highlights the similar transcriptional profiles 
associated with these two traits over time that appear to be 
dysregulated in association with known AD risk factors.

Limitations
Our study analysed bulk RNA sequencing data from 
whole-blood that did not take into consideration all 

species of RNA. Many of these other RNA species (e.g. 
long non-coding RNA or microRNA) are often regula-
tory, but we were not able to determine whether these are 
having an effect in our study population due to the type 
of sequencing performed. Furthermore, the modules and 
genes found to have altered expression may be driven by 
healthy ageing since we are not investigating a clinical AD 
population. However, many of the genes and pathways we 
found have also been previously implicated in AD. Addi-
tionally, in the differential gene expression, we included 
age and sex as covariates, and in the WGCNA analyses, 
we correlated the modules with age and sex, and these 
did not have a significant association with those that 
did have a significant association with APOE4 and amy-
loid accumulation. Therefore, it is less likely these gene 
co-expression networks are being driven by those other 
factors. It is, however, important to highlight that cor-
rection for multiple comparisons was not performed for 
the WGCNA module-trait associations, and the signifi-
cant associations we found would not survive this. They 
should therefore be considered as hypothesis-generating, 
so require further confirmation. Finally, some expression 
analyses did not yield any significant results potentially 
due to the sample size; hence, increasing this may result 
in a higher statistical power and more significance. How-
ever, the lack of significance for some analyses may be 
due to the investigation of gene expression in peripheral 
blood; thus, some differences may not be observed in the 
periphery due to biological reasons.

Conclusion
APOE4 status has already been shown to modify tran-
scription in older adults as well as those with AD [98, 99], 
and our study adds to this by highlighting transcriptional 
differences in blood in both upregulated and downregu-
lated genes, co-expression networks, and enrichment 
terms in APOE4 carriers who are still cognitively intact. 
We show that carriage of APOE4 exacerbates differences 
in peripheral gene expression, where carriers have a sig-
nificant downregulation in the proteasome and myeloid 
cell development and a significant upregulation in oxida-
tive phosphorylation and ribosomal pathways, compared 
to non-carriers. These downregulated pathways seen in 
APOE4 carriers are also shown to be downregulated in 
those individuals who accumulate in amyloid, compared 
to those who do not. Consequently, the results implicate 
a disrupted immune system, protein removal, and metab-
olism in the asymptomatic phase of AD, particularly in 
those individuals who are at higher risk of developing 
the disease. This provides insight into the pathophysiol-
ogy of AD in blood, whilst providing potential targets for 
drug and therapeutic development, and potential blood 
biomarkers.
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Additional file 1: Supplementary Figure 1. Differentially expressed 
genes at follow-up compared to baseline in amyloid non-accumulators. 
Data points are based coloured on significance: grey = non-significant, 
blue = non-significant but with FDR p-value < 0.05, red = significant 
with FDR p-value < 0.05 and log2FoldChange ± 1. N = 53. Pval on y-axis 
represents the uncorrected p-value < 0.05 threshold for visualisation. Sup‑
plementary Figure 2. Detection of modules using baseline expression 
data. (A) Scale independence and (B) mean connectivity used to derive 
the soft power threshold. (C) Clustering of module eigengenes, where 
similar clusters were merged using a cutHeight =0.25 (red line). (D) Cluster 
dendrogram of co-expression modules shown, both with the 28 dynamic 
modules (top row) and final merged 17 modules (bottom row). Sup‑
plementary Figure 3. Top 20 general cell types derived from cell-specific 
enrichment of the highly interconnected genes from the baseline blue 
WGCNA module. The genes are displayed from left to right ranked by the 
most significant human tissue-cell-type. The red dotted line is the Bonfer-
ronicorrected significance (p = 3.69 × 10 × 10−5) by 1355 tissue-cell types. 
The grey line is the nominal significance (p = 1 × 10 × 10−3). The Y-axis 
indicates the tissue-cell-type specificity (–log10 (combined p value)) for 
each tissue-cell-type from the cell-specific enrichment. Supplementary 
Figure 4. Detection of modules using follow-up expression data. (A) Scale 
independence and (B) mean connectivity used to derive the soft power 
threshold. (C) Clustering of module eigengenes, where similar clusters 
were merged using a cutHeight =0.25 (red line). (D) Cluster dendrogram 
of co-expression modules shown, both with the 32 dynamic modules 
(top row) and final merged 35 modules (bottom row). Supplementary 
Figure 5. Top 20 general cell types derived from cell-specific enrichment 

of the highly interconnected genes from the follow-up blue WGCNA 
module. The genes are displayed from left to right ranked by the most 
significant human tissue-cell-type. The red dotted line is the Bonferroni-
corrected significance (p = 3.69 × 10 × 10−5) by 1355 tissue-cell types. 
The grey line is the nominal significance (p = 1 × 10 × 10−3). The Y-axis 
indicates the tissue-cell-type specificity (–log10 (combined p value)) for 
each tissue-cell-type from the cell-specific enrichment. Supplementary 
Figure 6. Top 20 general cell types derived from cell-specific enrichment 
of the highly interconnected genes from the follow-up turquoise WCGNA 
module. The genes are displayed from left to right ranked by the most 
significant human tissue-cell-type. The red dotted line is the Bonferroni-
corrected significance (p = 3.69 × 10 × 10−5) by 1355 tissue-cell types. 
The grey line is the nominal significance (p = 1 × 10 × 10−3). The Y-axis 
indicates the tissue-cell-type specificity (–log10 (combined p-value)) for 
each tissue-cell-type from the cell-specific enrichment. Supplementary 
Figure 7. Detection of modules using follow-up expression data. (A) Scale 
independence and mean connectivity used to derive the soft power 
threshold. (B) Cluster dendrogram of consensus modules.

Additional file 2: Supplementary Table 1. APOE4 follow-up versus base-
line significant differentially expressed genes. Supplementary Table 2. 
APOE4 non-carriers follow-up versus baseline significant differentially 
expressed genes. Supplementary Table 3. Cell deconvolution contribu-
tions generated using CIBERSORT. Supplementary Table 4. Amyloid 
non-accumulators follow-up versus baseline significant differentially 
expressed genes. Supplementary Table 5. Follow-up versus baseline 
significant differentially expressed genes in amyloid negative-positive and 
amyloid positive-positive individuals. Supplementary Table 6. Follow-
up versus baseline significant differentially expressed genes in amyloid 
negative individuals. Supplementary Table 7. Direct association scores 
of significant differentially expressed genes at follow-up versus baseline 
in APOE4 carriers. Supplementary Table 8. Direct association scores of 
significant differentially expressed genes at follow-up versus baseline in 
amyloid negativepositive and amyloid positive-positive individuals. Sup‑
plementary Table 9. APOE4 carriers gene set enrichment analysis gene 
ontology upregulated. Supplementary Table 10. APOE4 non-carriers 
gene set enrichment analysis gene ontology upregulated. Supplemen‑
tary Table 11. APOE4 carriers gene set enrichment analysis gene ontol-
ogy downregulated. Supplementary Table 12. APOE4 non-carriers gene 
set enrichment analysis gene ontology downregulated. Supplementary 
Table 13. Amyloid non-accumulators gene set enrichment analysis gene 
ontology upregulated. Supplementary Table 14. Amyloid non-accumu-
lators gene set enrichment analysis gene ontology downregulated. Sup‑
plementary Table 15. Amyloid negative-positive/positive-positive gene 
set enrichment analysis gene ontology upregulated. Supplementary 
Table 16. Amyloid negative-negative gene set enrichment analysis gene 
ontology upregulated. Supplementary Table 17. Amyloid negative-
positive/positive-positive gene set enrichment analysis gene ontology 
downregulated. Supplementary Table 18. Amyloid negative-negative 
gene set enrichment analysis gene ontology downregulated. Supple‑
mentary Table 19. Baseline Blue module enrichment. Supplementary 
Table 20. Follow-up Blue module enrichment. Supplementary Table 21. 
Follow-up Turquoise module enrichment.
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