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The role of APP and BACE1 trafficking in APP
processing and amyloid-β generation
Xiaojie Zhang and Weihong Song*
Abstract

Neuritic plaques in the brain are a major neuropathological hallmark of Alzheimer’s disease. They are formed by the
deposition and aggregation of extracellular amyloid-β protein (Aβ). Aβ is derived from the sequential cleavage of
amyloid-β precursor protein (APP) by β-secretase and γ-secretase. β-Site APP cleaving enzyme 1 (BACE1) functions
as the primary, if not sole, β-secretase in vivo and is essential for Aβ production. Regulation of APP processing is a
major focus of research into AD pathogenesis. The trafficking systems of APP and its cleavage enzymes are
complex. Transporting APP and secretases into the same subcellular organelles facilitates their interaction and
favors APP processing. The role of APP and BACE1 trafficking in the amyloidgenic pathway and the underlying
mechanisms for Aβ production are discussed in this review. In addition, the distinct mechanisms of amino- and
carboxy-terminal Aβ generation are reviewed.
Introduction
Alzheimer’s disease (AD) is the most common type of
dementia. The most common initial symptom is gradual
memory loss followed by impairment of other intellec-
tual abilities. According to the report of the Alzheimer’s
Association in 2013, every 68 seconds one American will
develop AD. AD is the sixth leading cause of death in
the United States and the only cause of death among the
top ten that cannot be prevented, cured or even slowed
[1], and it is now at the forefront of biomedical research.
AD patients tend to develop far more neurofibrillary

tangles and neuritic plaques in hippocampus and cortex
than age-matched healthy people [2,3]. A small peptide
now called the amyloid-β protein (Aβ) was isolated from
brains with amyloid depositon and it was subsequently
identified as the core protein of neuritic plaques [4,5].
Aβ is derived from amyloid-β precursor protein (APP)
by sequential proteolytic cleavage [6-9]; BACE1 (β-site
APP cleaving enzyme 1) and γ-secretase are important
enzymes in this process. The spatial proximity of APP
and enzymes is essential for APP processing and Aβ
production but several important questions regarding
these have major implications for our understanding of
AD pathogenesis and in AD drug development: how are
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APP and BACE1 trafficked through subcellular organelles?
How do the cleavage enzymes become mature and active?
Do these enzymes exhibit preferential activities in certain
subcellular locations? And how do substrates encounter
these enzymes?
Here, we review current studies that advance our

understanding of trafficking of APP and its cleavage
enzymes, and emphasize that the subcellular co-localization
of these facilitates APP processing. We discuss the pref-
erential β-cleavage sites on APP in different subcellular
compartments. Furthermore, we show that amino- and
carboxy-terminal Aβ generation occur in different sub-
cellular organelles due to distinct locations for active
BACE1 and γ-secretase.

An overview of APP processing and amyloid-β production
APP is first cleaved by β-secretase at the amino terminus
of Aβ, producing a secreted form of APP (sAPPβ) and
membrane-bound C99. C99 is subsequently cleaved by
γ-secretase to generate Aβ and intracellular carboxy-
terminal fragment (CTF)γ. β-Secretase could also cleave
APP within the Aβ region to produce C89 and truncated
amyloid species; however, most of the APP undergoes a
non-amyloidogenic cleavage process. APP is cleaved by
α-secretase within the Aβ domain to produce a secreted
form of APP (sAPPα) and membrane-bound C83. C83 is
further cleaved by γ-secretase, producing extracellular
fragment p3 and intracellular CTFγ (Figure 1). BACE1
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Figure 1 β-Amyloid precursor protein processing. β-Amyloid precursor protein (APP) can be cleaved via two pathways, the
nonamyloidogenic pathway (left, green) or the amyloidogenic pathway (right, red). Under normal conditions, the majority of APP is cleaved
within the amyloid-β (Aβ) domain by α-secretase to produce secreted APP (sAPP)α and membrane-bound C83. C83 can be further cleaved by
γ-secretase, producing extracellular fragment p3 and intracellular carboxy-terminal fragment (CTF)γ. In the amyloidogenic pathway, APP is first
cleaved by β-secretase to produce sAPPβ and membrane-bound C99. Cleavage of C99 by γ-secretase yields Aβ and intracellular CTFγ. γ-Secretase
cleaves APP at multiple sites close to the inner membrane leaflet to produce variants of Aβ peptide with different lengths. The 42 amino acid Aβ
peptide, Aβ42 (after γ-cleavage indicated in the figure), is considered the major toxic Aβ in Alzheimer’s disease. Insoluble Aβ is deposited and
aggregates to form the core of neuritic plaques in the brain, the pathological hallmark of Alzheimer’s disease.
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is the β-secretase in vivo, and the components of the
γ-secretase complex are presenilin (PS), nicastrin (NCT),
presenilin enhance 2 (Pen-2) and anterior pharynx-
defective 1 (Aph-1). The activity of α-secretase is associated
with several members of the ADAM (a distintergrin and
metalloproteinase) family, ADAM9, ADAM10 and tumour
necrosis factor-α convertase (also named ADAM17),
though other proteases may also contribute.

The role of intracellular trafficking of APP and BACE1 in
amyloid-β protein production
Both nascent APP and BACE1 molecules mature through
the constitutive secretory pathway from endoplasmic
reticulum (ER) to the plasma membrane (PM) [10]. The
majority of APP localizes to the Golgi complex [11]. Only
a small proportion of APP is detected at the cell surface
and over 50% is internalized within 10 minutes [12,13]
and sorted into early endosomes [14-16], where one
fraction of APP is recycled back to the PM and another
fraction is targeted to the lysosome for degradation
[17,18]. α-Secretase is particularly enriched at the cell
surface and competes with BACE1 for APP processing
[19]. α-Secretase also competes with β-secretase in the
trans-Golgi network (TGN), whereas protein kinase C
stimulates α-secretase activity to relatively decrease
β-cleavage [20]. However, BACE1 is predominantly lo-
calized in the TGN and endosomes [21]. These acidic
endosomal compartments provide a low pH environment,
which is more favorable for BACE1 activity [22]. Moreover,
BACE1 is rapidly internalized from the cell surface [23,24].
It is degraded by the ubiquitin-proteasome pathway
[25] and accelerating BACE1 degradation by ubiquitin
carboxyl-terminal hydrolase L1 (UCHL1) reduces C99
and Aβ production [26]. Therefore, the majority of cell
surface APP is processed through the non-amyloidogenic
pathway, whereas intracellular APP processing predomin-
antly involves the amyloidogenic pathway [14,16]. Only a
small fraction of γ-secretase complex components are
located on the cell surface, the rest mainly localized at
the ER, Golgi/TGN and endosome [27,28].
Since 1992, multiple lines of evidence have been used to

demonstrate that Aβ is mainly produced in the endosome/
lysosome system. Impairing APP trafficking to the cell
surface or enhancing APP internalization increased β-
secretase-mediated processing of it [16,29], while en-
hancing APP routing to, or reducing its internalization
from, the cell surface facilitated α-secretase-mediated
processing [30]. The endocytosis motif located at the
carboxyl terminus of APP (YENPTY) is responsible for
the efficient internalization of APP, in clathrin-coated
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vesicles, to early endosomes [15]. Deletion or mutation
of this motif led to APP endocytosis-deficiency and
significantly reduced Aβ production [13,31]. Endocytotic
pathway abnormalities were evident in the early stage of
sporadic AD brain, Down syndrome patients’ brains,
and AD animal models; these might contribute to AD
pathogenesis by altering trafficking of APP and BACE1.
The Down syndrome patients, with an extra copy of
chromosome 21, show increased expression of chromo-
some 21 genes, such as those encoding APP and Regulator
of calcineurin 1 (RCAN1), and inevitably develop char-
acteristic AD neuropathology. The Swedish double
mutant (KM/NL) APP produced significantly more Aβ
(approximately threefold) than wild-type APP [32-35];
however, abolishing the endocytic process of Swedish
APP by removing its endocytic motif still resulted in
substantially more Aβ than with normal APP. This re-
sult indicates that β-cleavage on Swedish APP does not
require an intact cytoplasmic domain and Aβ can also
be produced in the Golgi during its biosynthetic trans-
port [36]. Furthermore, inhibition of protein transport
from the ER to Golgi and redistributing Golgi proteins
into the ER by brefeldin A treatment, or retention of
APP in the ER with an ER-retrieval signal, significantly
reduced but did not abolish intracellular Aβ production
over the course of 24 hours [37,38]. All this evidence
indicates that intracellular trafficking of APP and
BACE1 clearly plays a central role in APP processing;
amyloidogenic cleavage of APP and Aβ production
occurred in multiple subcellular organelles, including the
ER/ER-Golgi intermediate compartment, the Golgi during
its biosynthetic transport, and the endosome/lysome after
endocytosis from the PM (Figure 2).

Co-residence of APP and BACE1 increased amyloid-β
protein production
It was reported that APP and BACE1 do not co-localize
at the PM [39], a site where APP is generally cleaved by
α-secretase [16,40]. Both APP and BACE1 were sorted
into Rab GTPase 5-positive early endosome [39,41], where
intact Aβ can be detected [16,42]. Before sorting into the
endosome/lysome system, however, APP and BACE1 were
distinctly regulated along their transport pathways, from
the TGN to PM and internalization. For example, Munc18-
interacting protein (Mint; also referred to as X11) contrib-
uted to the outward transport of APP from the TGN to
PM. Phosphorylation of Munc18 facilitated APP-BACE1
interaction and shifted APP to the BACE1-associated
microdomains, resulting in increased cleavage of APP by
BACE1 and Aβ production [43]. Internalization of APP oc-
curs via recruitment by the adaptor-protein complex AP-2
and Dab2 for clathrin-mediated endocytosis [18,44,45]. In
contrast to APP, BACE1 is internalized and sorted into Rab
GTPase 5-positive early endosome via a route controlled by
ADP-ribosylation factor-6 (ARF6) [44]. The short acidic
cluster-dileucine motif (DISLL) in the cytosolic tail domain
of BACE1 specifically binds to the Golgi-localized γ-ear-
containing ARF-binding proteins (GGAs), which mediate
the recycling of BACE1 between the TGN and early endo-
some [46-51]. GGA3 could also modulate BACE1 turnover
and stability while sorting it into the lysosome, and de-
creased GGA3 correlated with increased levels of BACE1
and β-cleavage of APP to produce Aβ [52]. Stimulation of
the recycling of cargo from the early endosome back to the
PM by overexpression of wild-type rab4, which regulated
sorting and cycling of early endosomes [53], decreased Aβ
secretion, suggesting that the residence time of APP and/or
BACE in early endosomes is essential for β-cleavage [39].
Moreover, BACE1 and APP needed to be in close proximity
for cleavage to occur [54,55]. The lipid raft is known to
facilitate the amyloidogenic cleavage of APP. BACE1, but
not α-secretase, interacts with proteins in lipid rafts, and all
four γ-secretase complex components associate with lipid
rafts as well. Addition of a glycophosphatidylinositol anchor
targeted BACE1 into lipid rafts, preferentially increasing
β-site cleavage on APP and Aβ production [56,57]. Lipid
raft microdomains, with a small size of 10 to 200 nm, form
stable and ordered platforms through protein-protein and
protein-lipid interactions [58]. They probably also promote
the proximity and interaction of APP and BACE1, as well
as the γ-secretase complex, thus contributing to Aβ pro-
duction. Recently, a sterol-linked β-secretase transit-state
inhibitor showed more effective inhibition of β-cleavage
and Aβ production than free inhibitors [59]. This was
not only because this inhibitor was internalized into the
endosome, where the β-cleavage occurred, but also be-
cause it was enriched in lipid raft microdomains where
the interaction between inhibitors and β-secretase was
enhanced. Collectively, these data indicate that facilitating
the co-residence and/or the interaction between APP and
BACE1 leads to increased β-cleavage of APP through a
regulated transport mechanism (Figure 3).

BACE1 cleavage of APP at two sites and regulation of
β-cleavage site specificity
BACE1 can cleave APP at two different sites to pro-
duce secreted forms of APP and a 99- or 89-residue
membrane-associated CTF (C99 or C89, respectively).
β-Cleavage at the site between Met596 and Asp597 of
APP (the Asp1 cleavage site) [21,60-62] results in the
release of C99 and then intact Aβ, Aβ1-40/42. In
addition to the Asp1 site, BACE1 can also cleave APP
within the Aβ domain between Tyr606 and Glu607
(the Glu11 cleavage site), releasing C89 and then amino-
terminally truncated Aβ, Aβ11-40/42. Under normal con-
ditions, the Glu11 cleavage site is the major β-cleavage
site [63]. Aβ11-40/42 was the predominant Aβ species in
neuronal cultures [21,64-66]. Both Aβ11-40/42 and p3 can
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Figure 3 Distinctly regulated β-amyloid precursor protein and β-site β-amyloid precursor protein cleaving enzyme 1 trafficking.
β-Amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE1) trafficking is differentially regulated from the site of trans-Golgi
network exit, internalization and further sorting into different compartments. Internalization of APP occurs through recruitment of the
adaptor-protein complex AP-2 and Dab2 for clathrin-mediated endocytosis. Munc18-interacting protein (Mint; also called X11) is involved in the
outward transport of APP from the trans-Golgi network to the plasma membrane. The recycling pathway of BACE1 is mediated by Golgi-localized
γ-ear-containing ARF-binding proteins (GGAs). ADP-ribosylation factor-6 (ARF6) mediates sorting of newly internalized BACE1 into Rab5-positive
early endosome and GGA3 could modulate BACE1 turnover and stability while sorting it into the lysosome.

Figure 2 β-Amyloid precursor protein trafficking. β-Amyloid precursor protein (APP) matures through the constitutive secretory pathway from the
endoplasmic reticulum to the plasma membrane (PM). The majority of APP is then quickly internalized into early endosomes, where APP is recycled
back to the PM or targeted to the lysosomal degradation pathway. Nonamyloidogenic processing (green) mainly occurs at the cell surface, where
α-secretase is particularly enriched. Amyloidogenic processing (red) involves APP trafficking through the secretory and recycling pathways where APP
interacts with β- and γ-secretases. Amyloid-β (Aβ) is mainly generated in the trans-Golgi network where the γ-secretase complex is enriched.
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be found in cerebrospinal fluid and media conditioned by
cultured cells [66-68].
Preferential cleavage of APP by BACE1 at the Asp1 or

Glu11 site is strongly dependent on the APP sequence
close to the β-cleavage sites [63] and the BACE1 sub-
cellular localization, and is not simply due to the
organelle's pH, oligosaccharide modification, or the
amount of APP substrate [69]. BACE1 tagged with KKXXX
(where X is any amino acid residue), the ER retrieval motif,
on its cytoplasmic tail was retained in the ER, resulting
in accumulation of immature BACE1 and leading to
β-cleavage of APP predominately at the Asp1 site. Replacing
the BACE1 cytoplasmic tail with the intracellular domain
of murine furin effectively caused BACE1 to be retained
in the TGN, resulting in preferential generation of C89
rather than C99; wild-type BACE1 primarily exists in
the TGN and endosomal system, where more C89 than
C99 is generated [69]. Targeting BACE1 to lipid rafts via
a glycophosphatidylinositol anchor enhanced BACE1
cell surface expression, resulting in the preferential
cleavage of APP at the Asp1 site and secretion of more
full-length Aβ. Significantly, this shift of the β-cleavage
sites was independent of the subcellular localization of
APP or the pathogenic KM/NL mutation [56]. C99 can
be further cleaved by BACE1 at its Glu11 site to produce
C89 [70]. However, when the APP-C99 fragment was
targeted to the ER by the KK motif, little C89 was
processed compared to the wild-type APP-C99 fragment
[71]. Most surprisingly, little Aβ was processed from
APP-C99-KK compared to wild-type APP-C99, though
APP-C99-KK, rather than wild-type APP-C99, showed
colocalization with PS1 in the ER. However, the intra-
cellular Aβ production from C99-KK could be partially
restored by addition of brefeldin A [71]. These data
demonstrate that C99 and C89 were processed in distinct
subcellular organelles; C99 was more likely to be produced
in the ER by immature BACE1 whereas C89 was predom-
inantly processed in the downstream apparatus of the ER,
TGN and lysosomal system.

Distinct subcellular sites to generate amino-terminal and
carboxy-terminal amyloid-β protein fragments
C99 is mainly produced in the ER. The cleavage of C99
to generate Aβ requires co-residence of C99 with activated
γ-secretase complex. However, the ER is not the organelle
where C99 can be processed by γ-secretase. By retaining
C99 in the ER with the KKQN motif or co-expression with
a dominant-negative mutant of the Rab1B GTPase to pre-
vent C99 from exiting the ER, Aβ production was almost
completely eliminated. In contrast, when C99 was allowed
to leave the ER or targeted into the Golgi and other digital
compartments with the QLQN motif, it normally gave rise
to substantial amounts of Aβ [72]. C99-GFP accumulated
in the early endosome after inhibition of γ-secretase activity
[73]. Furthermore, inhibiting the exocytosis of constitutively
secretory vesicles, rather than inhibiting clathrin-mediated
endocytosis, caused the accumulation of C99-GFP in nu-
merous small vesicles beneath the PM. These data suggest
that the cleavage of C99 does not occur in the ER, Golgi or
constitutively secretory vesicles, but occurs after it is
inserted into the cell surface and endocytosis [73,74].
Assembly of the γ-secretase complex starts at the ER

[75,76]. Aph-1 contributed to the trafficking and matur-
ation of the γ-secretase complex. First, Aph-1 polypep-
tides formed a stable subcomplex with NCT in the ER,
dependent on its GXXXG motif, which is the initial step
for the formation of the whole complex [77-79]. This tightly
folded subcomplex interacted with nascent PS through the
hydrophobic interface formed by the transmembrane
domains of Aph-1 and NCT [80]. However, PS preferen-
tially binds to the mature and fully glycosylated NCT [81];
therefore, after NCT passed through the Golgi and fully
matured, PS/NCT/Aph-1 formed a trimeric intermediate.
Then PS was subjected to endoproteolysis to generate
its amino- and CTFs (PS-CTF and PS-NTF, respectively)
[82,83]. Furthermore, Pen-2 interacted with PS-NTF [80]. Fi-
nally, a mature and fully glycosylated NCT, a heterodimeric
form of PS-NTF/PS-CTF, Pen-2 and Aph-1 exist at the cell
surface as a mature and active γ-secretase complex [84] that
can interact with C83 and C99 and cleave them to produce
the CTF of Aβ. This complex can be isolated and cleave its
substrates, C99 and Notch, in in vitro activity assays [27].
PS1 could also play a role in modulating the trafficking of

membrane and secretory proteins [85]. Significant amounts
of full-length PS1 were found cycling between the ER
and Golgi, regulated by COPI-mediated retrograde
transport [86]. Recently, the same group reported that
the overexpression of PS1 resulted in retention of Aβ-
containing CTFs and Aβ in COPI-coated membranes
of the vesicular tubular clusters and ER, while increasing
the mutant PS1, which was mainly present in post-Golgi,
showed the opposite effect on APP trafficking [87]. These
data suggest the potential role of PS1 in the trafficking of
APP and its derivatives. However, it is still unknown how
the C99 is transferred into areas with active γ-secretase
complex, and whether C99 can be cleaved into C89 or C83
dependent on encountering β-secretase or α-secretase
along its transport pathway.
All these studies indicate that β-secretase and γ-secretase

process their substrates in distinct subcellular organelles
and, thus, the amino-terminal and CTFs of Aβ are gener-
ated in different organelles, and the APP β-cleavage prod-
ucts C99 or C89 need to be transported into the areas with
fully mature and active γ-secretase complex.

Conclusion
APP and BACE1 trafficking are essential for APP processing.
Enhancing their interaction and/or increasing their chance

http://alzres.com/content/5/5/46


Zhang and Song Alzheimer's Research & Therapy Page 6 of 82013, 5:46
http://alzres.com/content/5/5/46
of co-residence in the same compartment or in close
proximity to each other facilitates the β-cleavage of
APP. BACE1 cleaves APP at two different sites, the β-site
or β’-site, to produce C99 and C89, respectively, and the
regulation of β-cleavage site specificity depends on the
subcellular localization of BACE1. Targeting BACE1
into the ER or lipid raft microdomains results in the
preferential cleavage of APP at the β-site to generate C99
with intact Aβ at its amino terminus. However, C99 has to
be further transported into areas, such as the cell surface,
with a mature and active γ-secretase complex, where it can
be cleaved by γ-secretase to generate the CTF of Aβ.
The trafficking of APP and its processing enzymes,

especially BACE1, is essential for APP processing and
Aβ production. Understanding how APP and these en-
zymes are trafficked through their secretory pathways and
how the substrates encounter these enzymes with prefer-
ential activities in distinct locations will provide important
insights that could help in the development of therapeutic
drugs in the future. Valid strategies could be to prevent
Aβ production by altering the trafficking of APP and
BACE1, or to use small molecules to block the accessibilty
and interaction between substrates and enzymes.
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