
Moguilner et al. 
Alzheimer’s Research & Therapy           (2024) 16:79  
https://doi.org/10.1186/s13195-024-01449-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Alzheimer’s
Research & Therapy

Biophysical models applied to dementia 
patients reveal links between geographical 
origin, gender, disease duration, and loss 
of neural inhibition
Sebastian Moguilner1,2,3,4,16, Rubén Herzog1, Yonatan Sanz Perl3,5,6,7, Vicente Medel1,8, Josefina Cruzat1, 
Carlos Coronel1, Morten Kringelbach9,10,11, Gustavo Deco7,12,13,14, Agustín Ibáñez1,2,3,15,16* and 
Enzo Tagliazucchi1,3,5,6* 

Abstract 

Background The hypothesis of decreased neural inhibition in dementia has been sparsely studied in functional 
magnetic resonance imaging (fMRI) data across patients with different dementia subtypes, and the role of social 
and demographic heterogeneities on this hypothesis remains to be addressed.

Methods We inferred regional inhibition by fitting a biophysical whole-brain model (dynamic mean field model 
with realistic inter-areal connectivity) to fMRI data from 414 participants, including patients with Alzheimer’s disease, 
behavioral variant frontotemporal dementia, and controls. We then investigated the effect of disease condition, 
and demographic and clinical variables on the local inhibitory feedback, a variable related to the maintenance of bal-
anced neural excitation/inhibition.

Results Decreased local inhibitory feedback was inferred from the biophysical modeling results in dementia patients, 
specific to brain areas presenting neurodegeneration. This loss of local inhibition correlated positively with years 
with disease, and showed differences regarding the gender and geographical origin of the patients. The model cor-
rectly reproduced known disease-related changes in functional connectivity.

Conclusions Results suggest a critical link between abnormal neural and circuit-level excitability levels, the loss 
of grey matter observed in dementia, and the reorganization of functional connectivity, while highlighting the sensi-
tivity of the underlying biophysical mechanism to demographic and clinical heterogeneities in the patient population.
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Background
The increasing prevalence and underdiagnosis of 
dementia represent a global challenge, which is more 
accentuated in diverse and non-stereotypical popula-
tions [1]. In comparison with other regions, individu-
als from Latin America (Latam) present larger genetic 
and socioeconomic heterogeneity [2] and they are also 
underrepresented in the scientific literature [3]. Bio-
markers developed in high income countries (HIC) 
usually fail to generalize to Latam [4, 5], which could 
be explained by sample heterogeneity, where brain-
phenotype models of non-stereotypical samples fail 
to provide reproducible results [6]. More robust and 
mechanistically-oriented computational models are 
required to characterize the biological underpinnings of 
population heterogeneity; crucially, robust and specific 
computational models for neurodegenerative diseases 
such as Alzheimer’s disease (AD) and frontotemporal 
dementia (FTD) are needed to understand the overlap 
and differentiation across brain phenotypes. While pre-
vious studies have applied whole-brain models to inves-
tigate AD [7–10], to date no systematic brain modelling 
comparisons have been developed to test model repro-
ducibility and to address the effects of population het-
erogeneity associated with gender-specific effects.

Recent advances in neuroimaging-informed whole-
brain models have enabled the investigation of 
pathophysiological mechanisms preceding neurode-
generation, especially those related with departures 
from excitation/inhibition (E/I) balance of neural net-
works [11]. A leading hypothesis suggests that these 
imbalances may lead to functional connectivity impair-
ments associated with tau and amyloid β accumulation 
[12, 13]. Notably, epileptiform discharges and seizures 
occur in at least 20–40% of individuals with AD [14], 
many of which are undetected with current diagnos-
tic procedures. Epileptogenic neuronal activity can 
increase both amyloid β and tau secretion, establish-
ing a vicious cycle augmenting the aberrant aggrega-
tion and spread of the misfolding of these proteins [15]. 
Although these markers are less frequent in behavioral 
variant FTD (bvFTD) [16], they may be also present as 
non-convulsive seizures [17]. The prevalence of neu-
ral excitability over inhibition is supported by trans-
genic mouse models of AD [18], as well as by human 
studies probing cortical excitability using Transcranial 
Magnetic Stimulation (TMS) [19], and by the analysis 
of spontaneous activity recorded in  vivo with MEG, 
establishing a shift towards higher excitation in a group 
of advanced AD patients with dementia but not in 
early-stage patients [20]. Another study also reported 
network-specific decreases in neural inhibition in AD 
patients [21]. Considered as a whole, these results 

support the hypothesis of impaired inhibition as a main 
contributor to AD pathophysiology.

An important limitation of the previous literature is 
the lack of studies conducted on non-stereotypical phe-
notypes. In particular, computational models assessing 
changes in excitation and/or inhibition in AD and bvFTD 
patients lack validation in underrepresented samples, 
such as those from Latin American countries. Conduct-
ing studies in these samples is important to determine 
how disease mechanisms are influenced by environmen-
tal, socioeconomic, and genetic factors. Moreover, even 
though the dynamics of the cerebral cortex are highly 
heterogeneous [22], few modeling studies to date aimed 
to understand how brain-regional structural heteroge-
neities (e.g., atrophy) impact on neural excitation and 
inhibition [23] as estimated using functional magnetic 
resonance imaging (fMRI), and how this can be medi-
ated by geographical heterogeneity, disease duration, and 
demographic information.

In contrast to electrophysiological data, where the 
excitation/inhibition balance can be inferred from the 
power exponent of spontaneous activity [24], the esti-
mation of local inhibition and/or excitation from fMRI 
signals should be informed by a model of the underlying 
neural populations. Therefore, we adopted a whole-brain 
semiempirical approach incorporating on subject-spe-
cific resting-state activity, group-level (AD and bvFTD) 
atrophy, and a diffusion tensor imaging (DTI) structural 
connectome, all combined to fit a dynamic mean field 
(DMF) model to the empirical functional connectivity 
[25]. Following this approach, we aimed to determine 
whether AD and bvFTD were associated with impaired 
local inhibition from resting state fMRI recordings. For 
this purpose, we chose to tune the local feedback inhibi-
tion control (FIC) parameter informed by local atrophy 
estimates. This choice is based on reports of synapse 
loss during early neurodegeneration [26, 27], which 
could affect the homeostatic plasticity necessary for the 
balance of excitatory and inhibitory inputs [28]. Based 
on previous results, we expected that decreases in the 
optimal inhibitory FIC parameter would occur when 
fitting the model to AD and bvFTD functional connec-
tivity [29]. Moreover, we expected that incorporating 
disease-specific atrophy maps would optimize the fit to 
the functional data of each group, as previously reported 
in modeling studies of neurodegeneration [30], as well 
as in other datasets [25]. Given the more heterogeneous 
nature of disease presentation and progression in the 
Latam cohort due to higher variations in genetic factors 
and socioeconomic disparities [31, 32], we investigated 
whether diminished goodness of fit of the model could 
be observed in this dataset, relative to the less variable 
HIC cohort. We also investigated the potential effects of 
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disease duration on loss of feedback inhibitory current, 
expecting a relationship between both variables in case 
the model reveals that loss of local inhibition is associ-
ated with neurodegeneration in AD and bvFTD. We 
tested for the possibility of gender differences between 
Latam and HIC, given the larger gender disparities that 
are measured in less developed countries, with potential 
repercussions on neurodegenerative processes [33, 34]. 
Finally, we expected that that whole-brain model would 
reflect disease-specific profiles of functional brain con-
nectivity loss, with posterior nodes being more affected 
in AD and frontal nodes in FTD [35–37].

Methods
Participants
The sample consisted of two datasets from different 
regions, adding up to a total of 414 participants with 
MRI scans in two modalities: T1-weighted MRI and rest-
ing-state fMRI scans (n = 118 individuals with bvFTD, 
n = 139 individuals with AD, and n = 157 HC), matched 
for demographic variables (i.e., age, sex, and education) 
and by region (Table S1). Of the 414 participants, 18 
individuals with bvFTD, 39 with AD, and 57 HC were 
obtained from samples of a pre-existing Latin America 
and the Caribbean (LAC) database, referred hereafter 
as the Latam sample (Table S1). The rest of the partici-
pants, 100 individuals with bvFTD, 100 with AD, and 100 
HC were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (AD = 100 and HC = 50), 
the Neuroimaging in Frontotemporal Dementia (NIFD/
LONI) (bvFTD = 100 and HC = 50), referred hereafter as 
the High Income Country (HIC) sample [38] (Table S1). 
Within the HIC sample we selected a subsample match-
ing the Latam sample size (18 individuals with bvFTD, 
39 with AD, and 57 HC), balanced through demographic 
variables (see Table S1) to run a reproducibility analysis. 
The Latam sample included participants that are under-
represented in the scientific literature and was obtained 
from the Multi-Partner Consortium to Expand Dementia 
Research in Latin America (ReDLat) [39] (Fig. 1A).

Across samples, the clinical diagnoses were pro-
duced by experts in dementia through an extensive 
neurological and neuropsychiatric examination com-
prising semi-structured interviews and standardized 
tests, with  current criteria for  probable bvFTD, and the 
National Institute of Neurological and Communicative 
Diseases and Stroke/Alzheimer’s Disease and Related 
Disorders Association (NINCDS-ADRDA) clinical cri-
teria for AD [40, 41]. The patients did not present any 
psychiatric, vascular, or other neurological disorders. 
The inclusion of healthy control subjects required the 
confirmation of normal cognitive function, the absence 
of any disease, and an MRI structural scan free of lesions 

or significant white matter/atrophy changes. The IRB of 
each institution that contributed with MRI images to this 
study approved the acquisitions, and all the participants 
of this study signed a consent form following the declara-
tion of Helsinki. The methods were performed in accord-
ance with the guidelines and regulations and approved by 
the committee of the ReDLat Multi-Partner Consortium 
members [39].

Neuroimaging acquisition and preprocessing
We obtained 3D structural volumetric and 10-min-long 
resting state fMRI sequences from all participants – the 
recordings were performed in three scanners for the 
Latam database, while for the HIC database, different 
scanners were used on each database but each group 
shared the same acquisition parameters (see Table S2 for 
details).

Whole‑brain dynamic mean field modeling
Having the subject-specific empirical fMRI timeseries as 
inputs, together with the atrophy w-scores per subject 
group (obtained by subtracting the mean and dividing by 
the standard deviation of the healthy controls) [42] and a 
DTI connectome of structural connectivity employed in 
previous work from our group [30], we fitted a dynamic 
mean field (DMF) [25] model to reproduce the whole-
brain FC (Fig. 1B). We then evaluated whether the model 
parameters inferred from the optimal fit correlated with 
demographic variables such as patients’ years with dis-
ease (YWD) and gender. The proposed model is a vari-
ant of that employed by Deco et  al. (2018) [25], where 
the heterogeneity of the local feedback inhibition param-
eter is modulated by the atrophy map specific to each 
patient group, thus adjusting the local excitatory/inhibi-
tory balance. The model comprises the 90 AAL-90 [43] 
nodes identified across cortical and subcortical regions 
(see Fig. 1C for a diagram of this approach). Each node 
consists of an excitatory neural population with local 
recurrent connections and long-range connections, and 
an inhibitory neural population having only local con-
nections. All the model parameters are compatible with 
known empirical values [44], and result in simulated 
neural dynamics that are qualitatively similar to those 
observed in experimental data [45, 46].

Considering the n-th node, the equations for the excit-
atory I(E)n  and inhibitory I(I)n   currents of the respective 
neural populations are the following:

With I0 = 0.382 nA as the external current, an excita-
tory scaling factor for I0 of  WE = 1 , and an inhibitory 

(1)I(E)n = WEI0 +W+JNMDAS
(E)
n + GJNMDA pCnpS

(E)
p − JnS

(I)
n

I(I)n = WII0 + JNMDAS
(E)
n − S(I)n
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scaling factor for I0 of  WI = 0.7 . The excitatory gluta-
matergic synaptic coupling (mediated by N-methyl-D-
aspartate receptors, [NMDA]), S(E)n  , is associated with the 
current  JNMDA = 0.15 nA , with a local excitatory recur-
rence weight of W+ = 1.4 , and a global coupling param-
eter G = 2.5 [25] as a scaling factor for the structural 
connectivity given by Cnp . The components of this matrix 
are determined by a DTI atlas [30]. The FIC parameter 
for region n,  Jn , is defined as:

with αn given by the atrophy w-score of region n, 
obtained for each group separately (i.e., AD and bvFTD) 
as well as for each database (i.e., HIC and Latam). Here, 
the parameter σ represents the extent to which the local 
atrophy values modulate the baseline FIC parameter, J0n , 
which is optimized through recursive adjustments to 
clamp the firing rate within a neurobiologically plausible 

(2)Jn = J0n (1+ σ .αn)

range of 3–4 Hz, following Deco et al. (2018) [25]. Thus, 
σ = 0 corresponds to the case when the atrophy does not 
influence the local inhibition, while its positive/negative 
influence is indicated by the sign of σ.

The equations that define the firing rate of the excita-
tory r(E)n  and inhibitory neurons r(I)n  are defined as:

The gain factor of the excitatory H(E) and inhibi-
tory  H(I) neuronal responses transforms the cur-
rents according to Deco et  al., 2018 [25]. The 
corresponding parameters are the conductance  
values, gE = 310 nC−1 and gI = 310 nC−1 , the threshold  
currents, I

(E)
thr = 0.403 nA and  I

(I)
thr = 0.288 nA , and 
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r
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Fig. 1 Methodological overview. A Recruitment from three centers in the Latam database consisted of demographically matched 18 bvFTD 
patients, 39 AD patients, and 57 HCs, while 100 bvFTD patients, 100 AD patients, and 100 HCs were downloaded to obtain a demographically 
matched HIC dataset. B Model inputs consisted of subject-specific FC in the AAL-90 atlas, group averaged atrophy patterns as 90 w-scores, 
and a 90 region DTI structural atlas. C Whole-brain modeling scheme fitting the σ feedback inhibition parameter that multiplies the atrophy vector 
in the feedback inhibition current Jn equation, tuned by Bayesian optimization (D) Model output consisting of simulated BOLD signals transformed 
from the excitatory firing rates using the Balloon-Windkessel model. E Hypothesis testing including the evaluation of the σ parameter, associations 
with YWD and sex, brain region-specific FC changes with YWD, and σ parameter variability analysis across datasets. FC: functional connectivity. YWD: 
years with disease; AD: Alzheimer’s disease. bvFTD: behavioral variant frontotemporal dementia. HC: healthy controls. DTI: diffusion tensor imaging
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constants determining the shape of the sigmoid func-
tion, dE = 0.16 and  dI = 0.087 . Finally, the excita-
tory,  S(E)n  , and inhibitory, S(I)n  , synaptic gatings are 
determined by:

The decay constants for glutamatergic activity and 
GABAergic activity are given by τNMDA = 0.1 s and 
τGABA = 0.01 s , respectively, the excitatory kinetic param-
eter constant is γ = 0.641 , and the uncorrelated gauss-
ian noise has amplitude σg = 0.01 nA . Given that the 
observable of the model that is meant to be fitted on the 
empirical BOLD signals, we applied a transformation 
from the simulated firing activity of each excitatory pool 
to BOLD fMRI signals using the Balloon-Windkessel 
(BK) model (Fig.  1D), as previously proposed by Deco 
et al. (2018) [25].

We employed the FastDMF implementation (https:// 
gitlab. com/ concog/ fastd mf) to overcome computational 
limitations when calibrating the FIC parameter which 
stabilize firing rates of excitatory pools, as well as when 
optimizing the parameters that fit the empirical func-
tional connectivity data of each group. This is a compu-
tationally efficient DMF implementation including the 
estimation of the FIC parameter based on the structural 
connectivity, which leverages Bayesian optimization to 
accelerate model fitting [47] (for more details on optimi-
zation see the Supplementary material).

Data analysis procedures
For each estimation of our variables of interest, we set σ 
as a free parameter and repeated the process 100 times 
to then take averages of each prediction. The high-per-
formance computing (HPC) cluster used consisted of two 
nodes, each containing two Intel Xeon 8268 “Cascade 
Lake” processors and 192  GB RAM running MATLAB 
(R2021b, Natick, Massachusetts: The MathWorks Inc.) 
on parallel. Finally, we obtained i) simulated FC matrix 
outputs that we could compare with empirical FC matri-
ces ii) σ values to correlate with demographic variables, 
and FC matrices by years with disease to brain connectivity 
changes across disease course (Fig. 1E).

Statistical analysis
To compare the empirical FC matrices with simulated 
FC matrices, we used the structural similarity index 
measure (SSIM). The SSIM metric is defined as 
2µxµy+0.01

µ2
x+µ2

y+0.01

2σxσy+0.03

σ 2
x+σ 2

y +0.03

σxy+0.015

σxσy+0.015 , where x and y stand for  

the two matrices being compared, and the variables µx , 
µy , σx , σy σxy correspond to the local means, standard 

(4)
dS(E)n (t)

dt
= −

S
(E)
n

τNMDA
+

(
1− S(E)n

)
γr

(E)
n + σgvn(t)

dS(I)n (t)
dt

= −
S
(I)
n

τGABA
+ r

(I)
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deviations, and covariances of matrices x and y, respec-
tively. SSIM has the advantage of simultaneously weight-
ing the Euclidean and correlation distances between 
matrices. The distance (equivalently, dissimilarities) 
between empirical and simulated FC matrices was com-
puted as 1 – SSIM. To statistically compare associations 
between model fit parameters and demographic variable 
(e.g. gender) as well as to compare between databases of 
different geographic predominance, we employed analy-
sis of covariance (ANCOVA) (α = 0.05) after confirming 
normality, homogeneity of variance, and random inde-
pendent samples of the optimal model parameters. To 
assess statistically significant differences in the variance 
of the optimal model parameters across databases that 
could depend on geographic predominance of the popu-
lation (e.g. HIC vs. Latam), we used the Levene test 
(α = 0.05).

We employed the BrainNet Viewer [48] to obtain brain 
network FC representations to correlate positively and 
negatively with YWD, and used non-parametric Spear-
man correlation to examine associations between model 
parameter σ and YWD. Thus, this analysis used the 
model-generated FC to capture the relationship between 
σ and YWD, and use it to forecast the future evolution of 
inhibition loss in terms of local atrophy.

We used two sample tests (Benjamini–Hochberg FDR-
corrected, α=0.05) to assess for statistically significant 
differences between gender on each region (N = 4 com-
parisons) and the goodness of fit of the models (N = 5 
comparisons). Effect size was calculated using Cohen’s d, 
with the objective of comparing model performance with 
different brain atrophy maps as priors.

Results
Biophysical model fitting
First, we assessed the model fit performance by com-
paring the empirical FC matrices with the simulated 
FC matrices by computing 1 – SSIM values. Each simu-
lation was run using the following anatomical priors: 
subject-specific FC matrices for each group as optimi-
zation targets, a DTI structural connectome atlas, and 
w-score atrophy vectors corresponding to each group 
and region. The results of model fitting are shown in 
Fig.  2. The violin plots display 1—SSIM values for AD 
and bvFTD participants. To assess atrophy specificity, we 
compared the model fits with the corresponding atrophy 
for AD patients (Fig.  2A) and bvFTD patients (Fig.  2G) 
for each region (i.e., Latam and HIC) with respect to 
switched atrophies between centers (i.e., HIC AD model 
with Latam AD atrophy (HIC-Latam AD), Latam AD 
model with HIC AD atrophy (Latam-HIC AD), HIC 
bvFTD model with Latam bvFTD atrophy (HIC-Latam 
bvFTD), Latam bvfTD model with HIC bvFTD atrophy 

https://gitlab.com/concog/fastdmf
https://gitlab.com/concog/fastdmf
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(Latam-HIC bvFTD), and also shuffled atrophy vectors, 
i.e. atrophy vectors with randomly permuted entries. 
These values were obtained from 100 independent reali-
zations of the Bayesian parameter optimization algo-
rithm built in the FastDMF toolbox.

We found that the best fits were obtained with the cor-
rect atrophy vector for each center, and that these models 
showed statistically significant differences with respect to 
the shuffled atrophy maps (all p < 0.001, FDR-corrected). 
Moreover, for both AD and bvFTD, the correct atro-
phy models had statistically significant higher perfor-
mance with respect to the other atrophy models, with 
average 1-SSIM = 0.59 for HIC AD and 1-SSIM = 0.61 
for HIC Latam, and 1-SSIM = 0.63 for HIC bvFTD and 
1-SSIM = 0.65 for Latam bvFTD, compared to switched 
atrophies with a mean of 1-SSIM = 0.66 for AD and 
1-SSIM = 0.68 for bvFTD (all p < 0.001, FDR-corrected), 
and shuffled atrophies with a mean of 1-SSIM = 0.79 for 
AD and bvFTD (all p < 0.001, FDR-corrected), showing 
that meaningful atrophy patterns improve the fit to the 
empirical whole-brain FC matrix. Fitting values averaging 
1-SSIM≈0.6 are considered good model fits as reported 
in previous publications on similar models based on dif-
ferent datasets [30, 49]. Comparing fits between HIC 
datasets (AD and bvFTD) and Latam (AD and bvFTD) 
participants, we found a large effect size separating HIC 
AD atrophy models and Latam AD atrophy models 
(Cohen’s d = 1.85) (Fig. 2A) and a high effect when com-
paring goodness of fit of HIC bvFTD models vs. Latam 
bvFTD atrophy models (Cohen’s d = 1.19) (Fig.  2G). To 
account for the potential effects of different sample sizes 
and group imbalances between the HIC and Latam data-
bases, we performed a reproducibility analysis. Fitting 
the HIC model with a sample size group distribution 
matched with the Latam model yielded generalizable 
results (see Figure S1 of the Supplementary material). 
We obtained similar overall fitting performances on the 
HIC subsample (1-SSIM≈0.63) when compared to the 

HIC full sample (1-SSIM≈0.6) (n.s.: p > 0.05), with negli-
gible differences in performance when modeling different 
pathologies when comparing both datasets (AD models 
Cohen’s d = 0.12, bvFTD models Cohen’s d = 0.14) and 
with similar σ FIC parameters (all p > 0.05).

Local inhibition changes and years with disease
We next aimed to test if the parameter σ was associ-
ated with disease progression via the YWD variable. 
To this end, we ran simulations with the subjects sepa-
rated according to YWD (100 iterations each) for the 
HIC AD model, the Latam AD model, the HIC bvFTD 
model, and the Latam bvFTD model, and performed 
linear regressions. For the AD models we found sig-
nificant associations between σ and YWD for HIC AD 
(R = -0.658, p = 0.013,  np2 = 0.121) (Fig.  2D), and for 
Latam AD (R = -0.631, p = 0.017,  np2 = 0.114) (Fig.  2E). 
The ANCOVA analysis (see Figure S2 of the Supple-
mentary material for a visual representation) showed 
significant differences between models (F-score = 20.95, 
p-value = 0.024 (FDR corrected),  np2 = 0.04) and YWD 
(F-score = 9.53, p-value = 0.001 (FDR corrected), 
 np2 = 0.36) for the gender variable for the Latam partici-
pants with AD only. Notably, the linear regression mod-
els showed that women had a higher rate of progression 
(R = -0.687, p-value = 0.01,  np2 = 0.169,  R2 = 0.471) than 
men (R = -0.579, p-value = 0.024,  np2 = 0.124,  R2 = 0.335) 
(Fig.  2F). For the bvFTD models we found significant 
associations between σ and YWD for both HIC bvFTD 
(R = -0.381, p = 0.046,  np2 = 0.084) (Fig. 2 J), and for Latam 
bvFTD (R = -0.357, p = 0.048,  np2 = 0.081) (Fig.  2K). The 
models for the bvFTD participants did not evidence sig-
nificant differences in terms of gender (Fig. 2L).

Local inhibition changes by patient group, origin, 
and gender
Next, we investigated the σ parameter, linking brain 
atrophy to local inhibition. The results of this analysis 

Fig. 2 Goodness of fit and relationship between σ and YWD. A Model goodness of fit for participants with AD using different atrophy patterns. 
B HIC AD FC matrix with empirical FC matrix above diagonal and simulated FC with optimal parameters below diagonal. C Latam AD FC matrix 
with empirical FC matrix above diagonal and simulated FC with optimal parameters below diagonal. D Linear regression of σ vs. YWD for HIC 
AD participants. E Linear regression of σ vs. YWD for Latam AD participants. F Comparison of the coefficient of determination ( σ vs. YWD) 
between databases and genders in the AD subgroup, showing significant differences for Latam AD. G Model goodness of fit for participants 
with bvFTD using different atrophy patterns. H HIC bvFTD FC with empirical FC matrix above diagonal and simulated FC with optimal parameters 
below diagonal. I Latam bvFTD FC matrix with empirical FC matrix above diagonal and simulated FC with optimal parameters below diagonal. 
J Linear regression of σ vs. YWD for HIC Latam bvFTD participants. K Linear regression of σ vs. YWD for Latam bvFTD participants. L Comparison 
of the coefficient of determination ( σ vs. YWD) between databases and genders in the bvFTD subgroup, showing no significant differences. 
SSIM = Structural Similarity Index Measure, d = Cohen’s d, HIC-Latam AD = HIC AD model with Latam AD atrophy, Latam-HIC AD = Latam AD 
model with HIC AD atrophy, HIC-Latam bvFTD = HIC bvFTD model with Latam bvFTD atrophy, Latam-HIC bvFTD = Latam bvfTD model with HIC 
bvFTD atrophy. HIC = High Income Country database. Latam = Latin American database. YWD = Years with disease. σσ = Scaling parameter of FIC 
as a function of local atrophy values. HIC = High Income Country database. Latam = Latin American database. AD: Alzheimer’s disease. bvFTD: 
behavioral variant frontotemporal dementia

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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are shown in left and right panels of Fig. 3A for HIC and 
Latam, respectively. This figure shows that σ was approxi-
mately zero (i.e. no effect of atrophy on FIC) for the con-
trol group, and progressively more negative for AD and 
bvFTD (i.e. increased reductions in FIC). This was repli-
cated for both HIC and Latam. Figure 3B presents the σ 
values per patient group, cohort, and gender, with signifi-
cant differences between disease groups (AD vs. bvFTD) 
and cohorts (Latam vs. HIC) in female participants. 
Notably, the Latam models showed a statistically signifi-
cant higher σ spread than the HIC models according to a 
Levene test (p < 0.05).

Biophysical model predictions of disease progression
Finally, we assessed how the model predicted FC 
changes vs. YWD, both for negative correlations (i.e., 
FC decrease with cumulative YWD) and positive cor-
relations (i.e., FC increase with cumulative YWD). The 
objective of this analysis was to extrapolate the evo-
lution of FC with years with disease, assisted by the 
model that was fitted to the empirical data. This was 
implemented at node level first, and then at the brain 
network level. For this purpose, we obtained 100 inde-
pendent runs of the simulation for each of the optimal 
σ corresponding to the different numbers of YWD. 
Then, we computed the corresponding FC matrices and 
obtained the average Spearman correlation between 
each entry in the FC matrix and the YWD. The results 
of this analysis are shown in Fig.  4, where the mean 
Spearman correlation value between pairwise FC and 
YWD (as predicted by the model) is shown. For the 
participants with AD in high income countries, in the 
years with disease analysis, we observed a decrease 

mostly in lower temporal and parietal FC, and a mild 
increase in FC in fronto-occipital connections (Fig. 4A, 
left subpanel). For the participants with AD in the Latin 
American region, we saw a mild decrease mostly in 
lower temporal and parietal FC, and a mild increase 
in FC in fronto-parietal connections (Fig. 4B, left sub-
panel). For the participants with bvFTD in high income 
countries, we noticed a decrease mostly in connections 
stemming from orbitofrontal nodes, and an increase in 
lower temporal and parietal FC was evidenced (Fig. 4C, 
left subpanel). Finally, for the Latam participants with 
bvFTD, a decrease was noticed mostly in connections 
stemming from the anterior cingulate cortex, with a 
mild increase in scattered networks comprising occip-
ito-parietal and frontal FC (Fig. 4D, left subpanel).

These patterns of change can be put into correspond-
ence with known resting state networks (RSN). We 
employed a set of canonical RSN masks from an atlas of 
functional ROIs averaged in MNI space [50] (VN: visual 
network, SN: salience network, MN: motor network, 
EXEC: executive control network, DMN: default mode 
network). We then computed the average Spearman 
coefficient (FC vs. YWD) of each node, separately for 
positive vs. negative FC, and thresholded these vectors 
to match the number of non-zero entries in the RSN 
maps parcellated using the AAL atlas. Finally, we com-
puted the overlap between the binarized maps of posi-
tive/negative correlation of FC. vs. YWD and each RSN 
by means of the Jaccard index between the correspond-
ing binary vectors. Results are presented in the radar 
plots of Fig.  4. While the results for positive associa-
tions did not follow a clear trend, we observed a robust 
association between FC decrease with YWD overlap-
ping with RSN and EXEC networks for AD patients 

Fig. 3 Overview of the optimal model parameter σ , related to the effect of atrophy on feedback inhibitory current. A σ for the different subgroups, 
both for HIC (left) and Latam (right). B σ separated by geographic origin, patient subgroup (AD and bvFTD) and gender. In both cases, shown 
p-values were obtained using an independent two sample t-test
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(Fig.  4A and B, right subpanels), while for bvFTD 
patients this association was present almost exclusively 
at the SN (Fig. 4B and C, right subpanels).

Discussion
While animal studies support the role of hyperexcitability 
in the onset and progression of neurodegenerative dis-
eases, the in  vivo assessment of neural excitation/inhibi-
tion is difficult in human neuroimaging studies. In this 
study, we used a biophysical model of whole-brain activ-
ity to investigate the potential relationship between altera-
tions in functional neuroimaging data and shifts from 
normal levels of local inhibitory currents that may under-
lie increased network hyperactivity in dementia patients. 
Using this model, we demonstrated loss of local inhibition 
in AD and FTD patients, with changes specific to anatomi-
cal regions presenting neurodegeneration, as determined 
by the independent analysis of structural brain images. 
We also found an effect of gender, geographical origin, and 
years with disease on the local inhibition model parameter, 
and by simulating its progression we reproduced known 
results concerning whole-brain functional connectivity 
changes in dementia patients.

Biophysical modeling supports a link 
between neurodegeneration and loss of inhibition
While our model did not directly assess the balance 
between neural excitation and inhibition, previous 

research supports the choice of modeling changes in 
local inhibition in AD and bvFTD patients [9, 11, 18, 20, 
21]. In turn, our results provide support for the hypoth-
esis that alterations in neural inhibition modulated by 
disease-specific atrophy patterns can underlie changes in 
functional connectivity measured in neurodegeneration. 
In line with this hypothesis, previous studies reported 
reduced inhibitory interneuron activity as a potential 
cause of neural hyperactivity in AD animal models [18, 
51]. The resulting network hyperactivity increases the 
release of soluble amyloid [52, 53], triggering hyperexcit-
ability in the form of epileptiform discharges in patients 
with AD [53], thus leading to a feedback loop implicat-
ing loss of E/I balance, neurodegeneration, and amyloid 
levels. Crucially, studies in humans showed that amyloid 
load in AD causes loss of inhibitory GABAergic neural 
terminals [54], which can displace dynamics towards 
hyperactivity. Increased amyloid can also trigger neuro-
degeneration, as shown in a study that found that brain 
regional atrophy is strongly correlated with amyloid load 
in early AD [55]. A recent study assessing brain net-
work E/I imbalances in amnestic MCI evidenced a direct 
relationship between an hyperexcitability-triggered 
reduction functional connectivity in networks support-
ing memory formation and atrophy in brain regions 
also associated with memory [56]. Overall, our results 
strengthen the reported links between loss of inhibitory 
synapses and neurodegeneration.

Fig. 4 Decreases and increases of FC vs. YWD predicted by the biophysical model. AD from HIC (panel A), AD from LAtam (panel B), bvFTD 
from HIC (panel C) and bvFTD from Latam (panel D). The sagittal anatomical overlays present the top 5% of pairwise FC connections in terms 
of their negative (green for AD, purple for bvFTD) and positive (grey in both cases) Spearman correlation with YWD. The radar plots indicate 
a significant overlap of the regions with negative FC changes vs. YWD and DMN/EXEC RSN for AD, and with SN RSN for bvFTD. VN: visual network, 
SN: salience network, MN: motor network, EXEC: executive control network, DMN: default mode network; FC; functional connectivity, YWD: years 
with disease; AD: Alzheimer’s disease; bvFTD: behavioral variant frontotemporal dementia
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The balance between neural excitation and inhibi-
tion can be estimated from resting state MEG and/or 
EEG data by computing the aperiodic exponent of the 
signal. This method was validated with simulated local 
field potentials [24], and applied to AD patients by van 
Nifterick and colleagues [20], reporting signs of hyperex-
citability in demented patients with AD but not in early-
stage patients, which is fully consistent with our findings. 
Our approach is complementary to that of van Nifterick 
et al., as it is based on a different imaging neuroimaging 
modality. Moreover, the use of fMRI presents distinct 
advantages over approaches based on scalp EEG. The 
high spatial resolution of fMRI facilitates the formulation 
of a whole-brain model without need of source localiza-
tion. Data measured using other techniques with equal 
or superior high spatial resolution can be aligned to the 
functional MRI data and then incorporated as anatomi-
cal priors to constrain the model parameters [57]. Here 
we followed this approach using brain atrophy measured 
using structural MRI, but previous models have incorpo-
rated spatial maps of receptor density [25], tau and Aβ 
deposition maps [8] measured with PET.

Group‑specific relationship between loss of neural 
inhibition and years with disease
Interestingly, we found that averaged subject group-spe-
cific atrophy patterns increased model fit in the case of 
participants with AD, with a lower fit performance for 
participants with bvFTD. Moreover, using atrophy maps 
from each dataset and condition allowed us to evaluate 
whether the observed excitation-inhibition abnormali-
ties also were disease-specific. While the direction of FIC 
change was the same in AD as in bvFTD, the increasing 
tendency to hyperexcitability with increasing YWD pre-
sented a larger slope for AD compared to bvFTD. The 
hyperexcitability phenotype is less frequent in bvFTD 
[16, 17], which might contribute to explain these results.

Inclusion of disease‑specific atrophy maps
Differences in neural cytoarchitecture, neurotransmit-
ters, and ion channel variability across the brain results in 
functional heterogeneity, including in the predominance 
of excitation/inhibition [58]. Hence, it is reasonable to 
expect that neurodegeneration indexed by local atrophy, 
associated to proteinopathy load [59] and potentially to 
neural hyperactivity [14] may improve whole-brain mul-
timodal models [30], which was confirmed by our results. 
Previous computational efforts also attempted to char-
acterize the mechanisms underlying altered large-scale 
activity and functional connectivity in neurodegenera-
tion and dementia [7–10]. For instance, fMRI resting-
state connectivity alterations in AD were reproduced by 
manipulating brain dynamics through Hopf bifurcation 

parameters [7, 30], while other studies included anatomi-
cal priors related to protein deposition [8]. Moreover, 
such models were used simulate the presence of neu-
ral hyperactivity by using amyloid PET connectomes as 
input to generate EEG patterns matching empirical sig-
nals [9]. Our work presented certain advances over these 
previous studies, such as the inclusion of disease-specific 
anatomical priors and the analysis of the impact of sam-
ple variability in model fitting performance.

Effect of demographic and clinical variables on loss of local 
inhibition
Neurodegeneration phenotypes may differ in HIC com-
pared to Latam regions due to varied social, cultural, and 
geographic contexts [3–5]. Multiple factors including 
genetic [3, 60, 61], cognitive [62, 63] and brain structural 
and functional network features [63, 64], together with 
socioeconomic disparities can induce heterogeneous 
presentations of AD and bvFTD [31, 32]. Our approach 
was able to capture geographic heterogeneity generating 
differences in model performance. The variability of the 
parameter linking loss of inhibition to brain atrophy was 
significantly higher in Latam models, impacting in model 
fit performance for this population compared to the 
HIC models. Nevertheless, the Latam models employing 
geographic-specific atrophy performed better than those 
based on randomized atrophy patterns. These results 
highlight the robustness of our model to withstand neu-
rodegeneration phenotype heterogeneity.

Concerning the correlation between YWD and the 
parameter linking atrophy to hyperactivation, it is known 
that the GABAergic system presents significant changes 
in the course of ageing and AD [27, 29]. The loss of 
inhibitory GABAergic interneurons resulting in net-
work hyperactivity may be a key driver of neurodegen-
eration in AD by stimulating the spread of amyloid and 
tau pathology, which in turn promotes excitotoxicity and 
cell death [28]. This is consistent with our finding that the 
local inhibition parameter was significantly associated 
with years of disease, particularly for AD.

Notably, the patient groups did not have a homogenous 
temporal trajectory, with Latam subjects experimenting 
a higher rate of change. Moreover, the rate of progres-
sion was higher in women participants with AD than in 
men with AD. Anatomical MRI studies in MCI and AD 
subjects show that atrophy rates are faster than those in 
men [65, 66]. Indeed, divergent changes in brain struc-
ture were evidenced in quantitative proteomic studies 
[67], showing that women have more alterations in white 
matter and mitochondrial proteomes that result in more 
rapid neurodegeneration. Brain structure differences may 
be exacerbated by gender inequality impacting mental 
health [67], where exposure to adverse environments 
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can decrease dendritic branching and synapse forma-
tion impacting cognitive reserve [68]. In the case of the 
bvFTD participants, such differences were not present. 
This may be explained by the higher prevalence of bvFTD 
in men and the typically later age of onset in women [69]. 
Third, women have a tendency to suffer from language 
impairments associated with the less frequent presenta-
tion of primary progressive aphasia [69], adding hetero-
geneity to this group in its atrophy patterns.

The comparison of patient samples from different 
geographic regions requires the analysis of multi-center 
data acquired with different MRI scanners, potentially 
obscuring significant differences. However, our analysis 
was capable of revealing differences in the FIC between 
groups as well as an association with years with disease, 
in spite of the variability that could have been intro-
duced by the different scanning sites. On the other hand, 
while some of the results presented higher spread in the 
Latam group compared to the HIC group, this was not 
universally observed for all comparisons, suggesting the 
absence of a systematic bias due to scanner and sequence 
heterogeneity.

The present analysis could only attribute differences 
between the Latam and HIC samples to their geographi-
cal origin. To address this non-specificty, future studies 
should replicate our findings using better characterized 
samples, including data on environmental exposure, 
social determinants of health, socioeconomic status, risk 
factors and genetic diversity, which are factors implicated 
in the disparity between Latam and HIC [70–75].

Consistency with previous reports of hypoactivation 
in advanced AD patients
While increased task-evoked activation is characteris-
tic of prodromal AD, some studies support the opposite 
result in MCI and AD patients with dementia, resulting 
in an inverse U-shape for brain activation [76]. In con-
trast, our results show decreased neural inhibition in AD 
patients, which could translate to facilitated activation. 
However, MCI patients may also exhibit hyperactivation, 
which also predicts the progression to dementia [77]. The 
diffuse boundary at the hyper- to hypoactivation transi-
tion could be related to variability in tau and amyloid-
beta (Aβ) burden. Indeed, biophysical models applied to 
MEG data suggest that changes in excitatory/inhibitory 
time constants are linked to deposition of tau and Aβ 
[8, 13], and a study of healthy aging individuals found a 
quadratic relationship between Aβ burden and hyperac-
tivation [78]. As this information was not available for all 
the participants in our sample, it is not possible to assert 
that our finding decreased inhibition contradicts previ-
ous reports of hypoactivation.

Another important point concerns the difference 
between hyper/hypoactivation of task-evoked vs. 
intrinsic activity. As discussed above, several studies 
point towards hyperexcitable spontaneous activity in 
AD patients. Converging evidence is provided by ani-
mal studies [18], studies of cortical excitability assessed 
with TMS in humans [19], and by the investigation of 
the excitation/inhibition ratio as estimated from spon-
taneous MEG activity using data-driven analyses [20]. 
Task-evoked hyper- or hypoactivation could depend on 
multiple factors such as altered top–bottom attentional 
processes, cognitive impairment due to cortical atrophy, 
and neurovascular coupling, among others [79]. Impor-
tantly, these factors do not necessarily reflect changes in 
local excitation or inhibition, such as those implicated 
in the reduction of the FIC shown by our model-based 
approach.

Modeling changes in functional connectivity 
during disease progression
Whole-brain modeling results reflected data-driven dis-
ease-specific profiles of functional brain connectivity loss 
[80]. Previous research comparing fMRI functional con-
nectivity node affectation between AD and bvFTD has 
shown that bvFTD subjects have reduced nodal strength 
in the frontoinsular area, a relatively focal altered func-
tional connectivity between key components of the SN 
that are affected in bvFTD while a functional connectiv-
ity breakdown in posterior brain nodes, particularly in 
the parietal lobe, characterizes AD [81]. Posterior nodes 
are critical components of the DMN, which is a network 
associated with autobiographic memory associated with 
specific AD-affected nodes [82]. Alongside DMN altera-
tions that are hallmark in AD [83], we found EXEC net-
work impairments that have been also reported in early 
AD [84]. Moreover, we found that AD presented poste-
rior resting state network affectation such as in DMN, 
with an underlying anatomical structure atrophy, while 
on the other hand bvFTD showed anterior resting state 
network affectations within the SN, also with underlying 
atrophy in associated brain structures [85].

Our model predicted both positive and negative cor-
relations of FC with YWD as a consequence of loss of 
local inhibition. Compensatory mechanisms of the neu-
rodegenerative process resulting in hyperconnectivity are 
present even at early disease stages [86], and may vary 
during disease progression [87]. However, the compen-
satory hypothesis is currently under debate, pointing to 
neuronal network hyperactivity due to loss of inhibitory 
synapses as a driver of neurodegeneration rather than as 
a compensatory effect [29]. Resting state fMRI alone may 
not be sufficient to address the possibility of compensa-
tory mechanisms, which could require a more direct  
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connection with brain activity underlying the cogni-
tive functions that are compromised in patients with  
dementia [88].

Strengths and limitations
Our study presents some limitations and considerations 
for further research. First, the sample size, though lim-
ited, was comparable and in some cases even higher to 
similar previous work in the literature [8, 13, 25, 30], and 
was sufficient to obtain robust and specific results when 
modeling heterogeneous samples. However, some of the 
reported p-values (mainly those related to the association 
between changes in FIC and demographic variables) were 
above the threshold of 0.005, prompting the need for an 
independent replication of these results. Second, while 
sample imbalances across regions may tend to bias the 
results, our analysis employing a matched HIC sample 
rules out that possibility. Third, our distinction between 
HIC and Latam samples may not cover all possible soci-
odemographic nuances, requiring stricter demographic 
control in future studies. Fourth, dementia diagnosis 
typically relies on clinical criteria, but biomarkers like 
amyloid-β and tau proteins measured by PET or plasma 
are also used [89]. However, clinical criteria is valid for 
research [90, 91], and PET/plasma biomarkers have lim-
ited availability and low cost-effectiveness [4], and they 
do not provide a conclusive diagnosis nor discriminate 
well between FTD variants [92]. Plasma biomarkers hold 
promise but lack systematic validation in diverse popula-
tions [93]. Future research should combine clinical and 
biomarker criteria to model whole-brain dynamics, and 
use metabolic maps of tau and amyloid deposition priors 
to improve the fit of whole-brain modeling, considering 
the link between these proteins and changes in neural 
excitability [8, 13]. Fifth, other metrics of heterogeneity, 
such as genetics/admixture features and other measures 
of disease progression may capture brain phenotype 
diversity in a more comprehensive way. Sixth, our atrophy 
measures were averaged across groups, sharing this limi-
tation with other work in the literature [30]. However, our 
model allows the individualization of input parameters as 
distinct atrophy vectors, opening the possibility of study-
ing the single-subject progression of neurodegeneration. 
A related limitation is the use of an averaged reference 
connectome and approximation of zero-lag interaction 
between cortical regions. The conversion from firing rates 
to hemodynamic activity via the Balloon-Windkessel 
model blurs the input signals, integrating over the slow 
time scale characteristic of the vascular response, and 
thus filtering our fast signal variability that could emerge 
due to variability in the propagation velocity [94, 95]. On 
the other hand, the lack of good quality DTI for all partici-
pants led us to employ an average connectome, a frequent 

approximation in whole-brain modeling studies [7–9, 
23, 30]. The loss of white matter integrity in AD occurs 
in patterns that are generally independent of grey mat-
ter atrophy [96], which modulated the FIC in our model, 
suggesting that connectome differences were not the pri-
mary driver of our findings. As high-quality DTI connec-
tomes become increasingly available, this limitation could 
be overcome through personalized virtual brain models, 
which hold promise for addressing individual variabil-
ity in various neurological conditions, including neuro-
degenerative diseases [10, 21, 23, 97–103]. Finally, while 
fMRI provides neurobiological information, it falls short 
of giving direct  neurophysiological information as other 
techniques that quantify electrical activity in the brain. 
Biophysical models have been used in past studies for the 
indirect inference of neurophysiological information from 
BOLD signals [104, 105], and our study constitutes evi-
dence that informing fMRI data with models can indeed 
assist in the mechanistic interpretation of neuroimaging 
recordings acquired from AD and bvFTD patient groups. 
However, future studies should employ similar models 
including EEG or MEG modalities to obtain a more direct 
proxy of hyperexcitability, which would represent an 
important step towards the validation of fMRI studies.

Conclusions
In conclusion, a whole-brain model of AD and bvFTD 
was developed accounting for non-stereotypical and het-
erogeneous samples. The proposed model of the patho-
physiological mechanism was based on current biological 
literature pointing to the role of excitation-inhibition 
alterations as the underpinning of neurodegenerative 
diseases and their progression. Our model was robust in 
fitting functional connectivity pattern affectation across 
years with disease, with results that were specific to 
overall atrophy patterns and also to geographic and gen-
der differences across subjects, which may contribute to 
gain a deeper understanding of regional heterogeneity in 
dementia subtypes.
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