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Abstract 

Background Alzheimer’s disease (AD) is the most common form of dementia, progressively impairing cognitive abili-
ties. While neuroimaging studies have revealed functional abnormalities in AD, how these relate to aberrant neuronal 
circuit mechanisms remains unclear. Using magnetoencephalography imaging we documented abnormal local neu-
ral synchrony patterns in patients with AD. To identify global abnormal biophysical mechanisms underlying the spatial 
and spectral electrophysiological patterns in AD, we estimated the parameters of a biophysical spectral graph model 
(SGM).

Methods SGM is an analytic neural mass model that describes how long-range fiber projections in the brain mediate 
the excitatory and inhibitory activity of local neuronal subpopulations. Unlike other coupled neuronal mass models, 
the SGM is linear, available in closed-form, and parameterized by a small set of biophysical interpretable global param-
eters. This facilitates their rapid and unambiguous inference which we performed here on a well-characterized clinical 
population of patients with AD (N = 88, age = 62.73 +/- 8.64 years) and a cohort of age-matched controls (N = 88, age 
= 65.07 +/- 9.92 years).

Results Patients with AD showed significantly elevated long-range excitatory neuronal time scales, local excita-
tory neuronal time scales and local inhibitory neural synaptic strength. The long-range excitatory time scale had 
a larger effect size, compared to local excitatory time scale and inhibitory synaptic strength and contributed high-
est for the accurate classification of patients with AD from controls. Furthermore, increased long-range time scale 
was associated with greater deficits in global cognition.

Conclusions These results demonstrate that long-range excitatory time scale of neuronal activity, despite being 
a global measure, is a key determinant in the local spectral signatures and cognition in the human brain, and how it 
might be a parsimonious factor underlying altered neuronal activity in AD. Our findings provide new insights 
into mechanistic links between abnormal local spectral signatures and global connectivity measures in AD.
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Introduction
Alzheimer’s disease (AD) is the most common form of 
dementia, progressively impairing the cognition and 
behavior of the affected individual. It has been proposed 
that the effect of AD neurodegeneration on cortical neu-
ronal networks is partially reflected by the abnormal 
mechanisms of cortical neural synchronization and cou-
pling [1]. Neural synchronization refers to the simultane-
ous activity of neuronal groups in the brain. Repetitive 
spiking activities of neural populations manifests as oscil-
lations ranging from slow delta to fast gamma frequen-
cies. Synchronization of neural oscillations may represent 
both local synchrony , typically estimated from regional 
level power spectral density (PSD) of the electrophysi-
ological signal, and long-range synchrony, estimated from 
pair-wise coherences between signals originating at dif-
ferent locations. Neurodegeneration disrupts both local 
and long-range synchrony [2, 3]. Because functional defi-
cits precede the structural deficits in AD, it is likely that 
local and long-range synchrony deficits occur before the 
onset of clinical symptoms, may worsen as the disease 
progresses, and may even play a role in disease manifes-
tation [4, 5]. It is therefore important to understand how 
synchrony within and between brain regions is disrupted 
in AD and is associated with cognitive impairment.

Electro- or magneto-encephalography (E/MEG), that 
capture temporal functional activity scales with millisec-
ond precision, studies have shown thats both local and 
long-range synchrony are abnormal in AD [6, 7].The rela-
tive PSD of patients with AD is significantly increased in 
the delta and the theta, while reduced in the alpha fre-
quency band [2, 8–13], often referred to as an oscillatory 
slowing. This oscillatory slowing has also been observed 
in MEG studies by our group and others  [6, 14–21]. 
Interestingly, these aberrant local synchrony patterns are 
associated with the pathological processes in AD  [22]. 
These data have naturally led to a search for a common 
underlying neural mechanism whose impairment might 
account for observed spatial and spectral shifts in E/
MEG imaging data in AD patients.

In this paper, we hypothesize that global alterations in 
neural mechanisms for synchrony can account for the 
abnormal spatiospectral profile of neural oscillations 
across the brain as observed in MEG, and predict cogni-
tive decline in patients with AD. We test this hypothesis 
using a biophysical model of whole-network level brain 
activity, called the Spectral Graph Model (SGM), which 
can capture these phenomena with a parsimonious set 
of biophysically interpretable parameters. SGM pos-
its that the anatomical network of fiber projections is a 
key substrate that underlies the emergence of spatially- 
and spectrally-patterned alterations in functional activ-
ity [23]. At its core, this model incorporates the effect of 

short- and long-range communication between cortical 
neuronal populations supported by the anatomical net-
work. To test the proposed hypothesis, we performed a 
thorough parameter inference of the SGM on individual 
subjects’ source reconstructed MEG data and assessed 
parameters from a well-characterized clinical population 
of AD patients and a cohort of age-matched healthy con-
trols. Consistent with our hypothesis, we demonstrate 
that a global slowing of long-range excitatory time scale 
is predictive of AD spatiospectral patterns and cognitive 
decline.

Methods
Data description
Eighty-eight patients with AD (diagnostic criteria for 
probable AD or mild cognitive impairment due to 
AD) [24–26] and 88 age-matched controls were included 
in this study. Each participant underwent a complete 
clinical history, physical examination, neuropsychologi-
cal evaluation, brain magnetic resonance imaging (MRI), 
and a 5-10-minute session of resting MEG. All partici-
pants with AD were recruited from research cohorts at 
the University of California San Francisco-Alzheimer’s 
Disease Research Center(UCSF-ADRC). Healthy control 
participants were recruited at UCSF-ADRC as well as 
from several ongoing studies at the Biomagnetic Imag-
ing Laboratory at UCSF. Informed consent was obtained 
from all participants and the study was approved by the 
Institutional Review Board (IRB) at UCSF (UCSF-IRB 
10-02245). The mean (std) age of controls and patients 
with AD was 65.07 (9.92) and 62.73 (8.64) years, respec-
tively. 51 (58%) of 88 controls, and 53 (60.2%) of patients 
with AD were females. The mean (std) MMSE score 
of patients with AD was 22.14 (5.55), while the mean 
Clinical Dementia Rating-Sum of Boxes (CDR) score of 
patients with AD was 4.90 (2.75).

Clinical assessments and MEG, and MRI acquisition 
and analyses
All the processing pipelines are the same as that for a 
previous study  [20]. Patients with AD were assessed via 
MMSE and a standard battery of neuropsychological 
tests. Patients with AD were assessed via a structured 
caregiver interview to determine the Clinical Dementia 
Rating.

MEG scans were acquired on a whole-head bio-
magnetometer system (275 axial gradiometers; MISL, 
Coquitlam, British Columbia, Canada) for 5-10 min, fol-
lowing the same protocols described previously [20, 27]. 
Tomographic reconstructions of source-space data were 
done using a continuous 60-second data epoch, an indi-
vidualized head model based on structural MRI, and a 
frequency optimized adaptive spatial filtering technique 
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implemented in the Neurodynamic Utility Toolbox for 
MEG (NUTMEG; http:// nutmeg. berke ley. edu). We 
derived the regional power spectra based on Desikan-
Killiany atlas parcellations for the 68 cortical regions 
depicting neocortex and allocortex, the latter includ-
ing the entorhinal cortex. Regional power spectra were 
derived from FFT and then converted to dB scale.

Resting state MEG data acquisition
Each subject underwent MEG recording on a whole-head 
biomagnetometer system consisting of 275 axial gradi-
ometers (MISL, Coquitlam, British Columbia, Canada), 
for 5-10 min. Three fiducial coils including nasion, left 
and right preauricular points were placed to localize the 
position of head relative to sensor array, and later coreg-
istered to each individual’s respective MRI to generate an 
individualized head shape. Data collection was optimized 
to minimize within-session head movements and to keep 
it below 0.5 cm. 5-10 min of continuous recording was 
collected from each subject while lying supine and awake 
with eyes closed (sampling rate: 600 Hz). We selected a 
60s (1 min) continuous segment with minimal artifacts 
(minimal excessive scatter at signal amplitude <10 pT), 
for each subject, for analysis. The study protocol required 
the participant to be interactive with the investigator and 
be awake at the beginning of the data collection. Spectral 
analysis of each MEG recording and whenever available, 
and the simultaneously collected scalp EEG record-
ing were examined to confirm that the 60-s data epoch 
represented awake, eyes closed resting state for each 
participant. Artifact detection was confirmed by visual 
inspection of sensor data and channels with excessive 
noise within individual subjects were removed prior to 
analysis.

Source space reconstruction of MEG data and spectral 
power estimation
Tomographic reconstructions of the MEG data were 
generated using a head model based on each partici-
pant’s structural MRI. Spatiotemporal estimates of neural 
sources were generated using a time-frequency optimized 
adaptive spatial filtering technique implemented in the 
Neurodynamic Utility Toolbox for MEG (NUTMEG; 
https:// nutmeg. berke ley. edu/). Tomographic volume of 
source locations (voxels) was computed through an adap-
tive spatial filter (8-mm lead field) that weights each loca-
tion relative to the signal of the MEG sensors [28, 29]. The 
source space reconstruction approach provided ampli-
tude estimations at each voxel derived through the linear 
combination of spatial weighting matrix with the sensor 
data matrix [28]. A high-resolution anatomical MRI was 
obtained for each subject (see below) and was spatially 
normalized to the Montreal Neurological Institute (MNI) 

template brain using the SPM software (http:// www. fil. 
ion. ucl. ac. uk/ spm), with the resulting parameters being 
applied to each individual subject’s source space recon-
struction within the NUTMEG pipeline [29].

To prepare for source localization, all MEG sensor loca-
tions were coregistered to each subject’s anatomical MRI 
scans. The lead field matrix (forward model) for each sub-
ject was calculated in NUTMEG using a multiple local-
spheres head model (three-orientation lead field) and an 
8-mm voxel grid which generated more than 5000 dipole 
sources, all sources were normalized to have a norm of 
1. The lead field matrix describes transformation from a 
unit dipolar source to observed sensor patterns. Columns 
of the lead field matrix (also called gain vectors or for-
ward kernels) describe the spatial sensitivity pattern of 
a single dipolar source across all sensors. Here we use 3 
orientations for each dipolar source and that is what is 
meant by a three-orientation lead-field matrix for each 
source. The MEG recordings were projected into source 
space using a beamformer spatial filter. Source estimates 
tend to have a bias towards superficial currents and the 
estimates are more error-prone when we approach sub-
cortical regions, therefore, only the sources belonging to 
the 68 cortical regions were selected for further analy-
ses. We used a spatial resolution of 8mm between dipo-
lar sources. Specifically, all dipole sources were labeled 
based on the Desikan-Killiany parcellations, then source 
time-courses for each orientation of dipoles within each 
region were averaged together to obtain regional time-
courses. In this study, we examined the broad-band (1-35 
Hz). Power spectra were derived by applying FFT on the 
time-course data and then converted to the dB scale.

The dual signal subspace projection (DSSP) preprocess-
ing denoising was run on 9 controls and 13 patients with 
AD where large artifacts were seen in MEG data [30]. No 
other data noise reduction procedures were done.

Magnetic resonance image acquisition and analysis
Structural brain images were acquired from all partici-
pants using a unified MRI protocol on a 3 Tesla Siemens 
MRI scanner at the Neuroscience Imaging Center (NIC) 
at UCSF. Structural MRIs were used to generate individ-
ualized head models for source space reconstruction of 
MEG sensor data. Structural MRI scans were also used 
in the clinical evaluations of patients with AD to iden-
tify the pattern of gray matter volume loss to support the 
diagnosis of AD.

Extraction of spectral peaks
Spectral features of the MEG PSD were extracted using the 
FOOOF toolbox [31]. We used the FOOOF.fit() function 
to extract the first two peaks of the periodic component of 
the PSD. If only one peak was present, the second peak was 

http://nutmeg.berkeley.edu
https://nutmeg.berkeley.edu/
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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assigned the same value as the first one. We set the lower 
limit of the peak_width_limits to be 2 Hz. All the 
other settings were the same as default.

Model
SGM provides a closed-form solution of the steady-state 
frequency response of different brain regions. Here, we use 
a Desikan-Killiany parcellation scheme [32] to estimate the 
brain regions. The SGM is characterized by 7 parameters, 
which are either global or local but spatially-invariant. 
These parameters include the spatially-invariant local syn-
chrony-related time constants τe, τi and spatially-invariant 
but local neural gains gei, gii as a measure of overall synap-
tic strength at the local scale for both excitatory and inhibi-
tory neuronal subpopulations; as well as a global excitatory 
time constant τG at the long-range scale representing the 
long-range network connections, global coupling constant 
α , and speed of transmission of signals among regions v. 
SGM is characterized by an additional local excitatory gain 
parameter gee but it is set to 1 to ensure parameter identi-
fiability. Each region is assumed to consist of local excita-
tory and inhibitory neuronal subpopulations that interact 
with each other and regulate the long-range excitatory 
neuronal populations. The long-range populations are 
assumed to be connected to each other via the structural 
connectome. Here, we use a template structural connec-
tome from the Human Connectome Project (HCP). Hence 
the model entails no features that may change from region 
to region, except of course features from the heterogene-
ously connected anatomical network. The structural con-
nectivity matrix is shown in Supplementary Fig. S5 and the 
distance matrix is shown in Supplementary Fig. S6. To infer 
the SGM parameters, we fit SGM output to the frequency 
spectra obtained from MEG for healthy controls and AD 
subjects. The model used here is similar to the SGM devel-
oped previously  [33–36], and is described in detail in the 
Supplementary document.

The model solution can be obtained in a closed form in 
the frequency domain as a function of angular frequency 
ω as:

where, X(ω) is a vector of the long-range pyramidal neu-
ronal population signal of every brain region, uk(ω) are 
the eigenmodes and �k(ω) are the eigenvalues obtained 
by the eigen-decomposition of a complex Laplacian 
matrix, N is the total number of brain regions (86 in 
this case), Hlocal(ω) is the transfer function of the local 
excitatory and inhibitory interactions, P(ω) is the Fou-
rier transform of white Gaussian noise which is an input 

(1)

X(ω) =

N

k=1

uk(ω)uk(ω)
H

jω + τ−1
G �k(ω)FG(ω)

Hlocal(ω)P(ω) ,

to the local excitatory and inhibitory signals, FG(ω) is the 
Fourier transform of a Gamma-shaped neural ensemble 
response function (derived in the Supplementary mate-
rial). Equation (1) is the closed-form steady-state solution 
of the long-range signals at a specific angular frequency 
ω . We use this modeled spectra to compare against 
empirical MEG spectra and subsequently estimate 
model parameters. In practice, only a few eigenmodes 
k ∈ [1,K ],K ≪ N  are needed to obtain sufficiently 
strong fits to empirical data, including especially the low-
est eigenmodes [34].

Model parameter estimation
The model parameter estimation procedure is same as 
described previously  [36]. Modeled spectra was con-
verted into PSD by calculating the norm of the fre-
quency response and converting it to dB scale by taking 
20log10() of the norm. Pearson’s r between modeled PSD 
and the MEG PSD was used a goodness of fit metric 
for estimating model parameters. Pearson’s r between 
modeled and MEG PSD was computed for all 68 brain 
regions. Its average r across all regions is referred to as 
the spectral correlation. Next we calculated the spatial 
correlation by obtaining the regional distribution of 
alpha band (8-12 Hz) raw power of both model x and 
MEG y . Then, the spatial correlation was defined as 
xT �(C + wI)� y , where C is the row degree normalized 
structural connectivity matrix, I  is the identity matrix, 
w is an empirical weight, and �(C + 10I)� is the row 
normalized version of C + 10I  . The objective function 
for optimization and estimation of model parameters 
was the sum of spectral and spatial correlations. We 
used a dual annealing optimization procedure in Python 
for performing parameter optimization [37].

Parameter initial guesses and bounds for estimating the 
static spectra are specified in Table 1. We defined three 
different bounds on the neural gain terms to ensure that 
the model is stable, based on prior work on model stabil-
ity  [35]. First, we supplied a larger bound on the neural 
gains for optimization. If the optimal model parameter 
was outside the stability boundary, we repeated optimi-
zation with a smaller bound. We repeated this procedure 
3 times to ensure that the final optimal model parameters 
correspond to the stable model solutions. We used a dual 
annealing optimization procedure in Python for param-
eter optimization  [37]. The dual annealing optimization 
was performed for three different initial guesses, and the 
parameter set leading to maximum sum of spectral and 
spatial correlations was chosen for each subject. The dual 
annealing settings were: maxiter = 500. All the other 
settings were the same as default.
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Statistical analyses
Statistical tests were performed using SAS software 
(SAS9.4; SAS Institute, Cary, NC) and the statsmodels 
package in Python. To compare the neuronal param-
eters between the controls and patients, we used a lin-
ear mixed-effects model (PROC MIXED), to compare 
model parameters ( τG, τe, τi, gii, gei,α, v ), including age 
as a covariate into the models. We reported the esti-
mated least-squares means and the statistical differences 
of least-squares means based on unpaired t-tests. We 
corrected for multiple testing using a Bonferroni cor-
rection on the 7 comparisons. We also developed univar-
iate linear regression models to examine the associations 
between model parameters and MMSE and CDR scores 
in AD. In these models, the dependent variables included 
MMSE and CDR (in separate models), and the predictor 
variables included the model parameters we found signif-
icant between AD and controls ( τG , τe , and gii ). We also 
corrected for multiple testing using a Bonferroni correc-
tion on the 3 comparisons. Next, we developed multivari-
ate linear regression models with dependent variables as 
MMSE and CDR (separately), and the predictor variables 
included all the significant parameters τG , τe , gii , and age 
as covariates.

Classification between AD and controls
We trained a random forest for classifying AD and con-
trols. Here, we used the SGM parameters and age as fea-
tures of the model. For training and testing, we employed 
a 5-fold stratified cross validation method. We divided 
the dataset into 5 folds and used the 4 folds for training, 
and the  5th fold for testing the model. We repeated this 
procedure 100 times. While training the model, no infor-
mation of the testing fold was provided. With the 4 folds 
of the training dataset, further 5-fold cross validation 
was performed to estimate the tuning parameter of the 
random forest. Here, we only tuned for the max depth 
with the following options for max depth: None, 2, 3, 
4. All other hyperparameters were kept as default in the 

sklearn package in Python. After estimating the tuning 
parameter, the model was trained using the entire train-
ing dataset and then tested on the  5th fold. The mean 
AUROC of the test dataset was finally reported. The fea-
ture importance was estimated as the average of the fea-
ture importance from the random forest classifier that 
was trained 100 times.

For training the classifier with hippocampal volume 
or MMSE as features, we only used a subset of subjects 
since this data was not available for all the subjects (56 
controls and 51 patients with AD with hippocampal 
volume data; 66 controls and 87 patients with AD with 
MMSE data). Since the controls and patients with AD 
were not age-matched when using hippocampal volume 
or MMSE as features, we did not include age as an addi-
tional feature for classification. For training the classifier 
with MEG PSD as features, we extracted the exponent 
of the aperiodic component and the center frequency 
and power of the first two peaks of every region’s PSD 
using the FOOOF toolbox  [31]. This resulted in a total 
of 5× 68 = 340+ 1 (for age) features. We set the lower 
limit of the peak_width_limits in FOOOF to be 2 
Hz. All the other settings were the same as default.

Results
Global timescales of empirical MEG electrophysiological 
recordings are longer in patients with AD
First, we show that the global timescales of empirical 
MEG recordings are longer in patients with AD. To this 
end, we collected MEG recordings for 88 patients with 
AD and 88 age-matched healthy controls. To evaluate 
the global timescales of the MEG recordings, we first cal-
culated the autocorrelation function of the bandpass fil-
tered MEG time-series for every brain region and then 
took a mean across all the brain regions (Fig. 1A). From 
this averaged autocorrelation function, we obtained an 
exponential decay time constant ( τ in e−t/τ ) that captures 
the timescale of a time series. Precisely, this is the value 
of the lag time for which the autocorrelation function is 

Table 1 SGM parameter values, initial guesses, and bounds for parameter estimation for static spectra fitting

Name Symbol Initial value 1 Initial value 2 Initial value 3 Lower/upper bound for optimization

Excitatory time constant τe 15 ms 25 ms 6 ms [5 ms, 30 ms]

Inhibitory time constant τi 10 ms 8 ms 150 ms [5 ms, 200 ms]

Long-range connectivity cou-
pling constant

α 1 0.5 0.1 [0.1, 1]

Transmission speed v 5 m/s 10 m/s 18 m/s [5 m/s, 20 m/s]

Alternating population gain gei 0.3 0.2 0.1 [0.001,0.7], [0.001,0.5], [0.001,0.4]

Inhibitory gain gii 0.6 0.1 1.2 [0.001,2.0], [0.001,1.5], [0.001,1.5]

Graph time constant τG 6 ms 15 ms 25 ms [5 ms, 30 ms]

Excitatory gain gee n/a n/a n/a n/a
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e−1 (see [38] and the references therein for more details). 
As seen in Fig. 1B, the time constant is significantly longer 
for AD based on a Kolmogorov-Smirnov test, implying 
that the MEG signals of patients with AD decay slower. To 
supplement this result, we obtained the mean PSD over 
all regions (Fig.  1C) and compared the center frequen-
cies corresponding to the first and the second peaks of the 
PSD in C (Fig. 1D). As seen in Fig. 1D, the center frequen-
cies of both the first and the second peaks of the PSD are 
lower in AD, based on a Kolmogorov-Smirnov test. This 
decrease in the center frequencies of the peaks also indi-
cates a slowing of the timescales in AD. To investigate the 

underlying mechanisms of this slowing, we inferred SGM 
parameters for the two cohorts as explained in the meth-
ods section and Supplementary Fig. S1.

SGM reliably reproduces the spectral and spatial patterns 
of power spectral density
The predicted spectra from SGM reliably captured the 
empirical MEG spectra from patients with AD and age-
matched controls (Fig. 2A; The mean (std) spectral cor-
relations were 0.72 (0.08) and 0.78 (0.09) for controls 
and AD, respectively, shown in Fig.  2C). Compared to 
age-matched controls, patients with AD showed a lower 

Fig. 1 A: Autocorrelation function from MEG timeseries. Each autocorrelation function is a mean of autocorrelation functions of all the brain 
regions, and therefore each line corresponds to a single subject. The timescale is the value of lag that corresponds to an autocorrelation function 
value of e−1 . B: Distribution of timescales obtained from autocorrelation function. Based on a Kolmogorov-Smirnov test, time constant of MEG 
recordings for patients with AD is significantly larger than the timescale of MEG recordings for healthy controls ( p < 0.001 , Cohen’s D effect size 
= 0.42). C: Power spectral density (PSD, in dB scale) extracted from the MEG recordings. Each PSD is a mean of all regions and then centered 
to the mean and scaled to unit variance for every subject separately. D: Center frequencies of the first and the second peaks of the PSD in C 
for every subject. Center frequencies of both the first and the second peaks are lower in AD ( p < 0.001 , Cohen’s D effect size = 0.21 for the first peak, 
p < 0.001 , Cohen’s D effect size = 0.32 for the second peak). The peaks were extracted using the FOOOF toolbox [31]
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alpha peak and a higher spectral power within the low-
frequency delta-theta range (2-7 Hz), in their empirical 
spectral recording from MEG. This characteristic spec-
tral change is clearly replicated in the predicted spectra 
derived from SGM. The spatial distribution of spectral 
power density of the alpha band, as expected, showed 
a postero-anterior distribution in both controls and 
patients. The spatial patterns of the predicted spectra 
from SGM reproduced this postero-anterior distribution 
with high fidelity (Fig. 2B; the mean (std) spatial correla-
tions were 0.60 (0.09) and 0.66 (0.09) for controls and AD, 
respectively, shown in Fig. 2D). The region-wise spectral 
correlations and the frequency band-specific spatial cor-
relations are also shown in Supplementary Fig. S2. These 
correlations were greater than 0.5 for more than 90% of 
subjects, regions, and frequency bands overall. Sam-
ple empirical versus modeled PSD for a single subject is 
shown in Supplementary Fig. S3. Sample spatial patterns 

in the beta frequency band are shown in Supplementary 
Fig. S4.

Patients with AD have altered network time constants 
and neural gains
Next, we compared the network parameters derived from 
the SGM between patients with AD and age-matched 
controls. Recall that these parameters are either global 
or local but assumed spatially-invariant. These param-
eters include the spatially-invariant local synchrony-
related time constants τe, τi and spatially-invariant but 
local neural gains gei, gii as a measure of overall synaptic 
strength at the local scale for both excitatory and inhibi-
tory neuronal subpopulations; as well as a global excita-
tory time constant τG at the long-range scale representing 
the long-range network connections, global coupling 
constant α , and speed of transmission of signals among 
regions v. Using a general linear model with age included 

Fig. 2 A: Comparison of empirical (left) and SGM (right) frequency spectra for controls (top) and patients with AD (bottom). The darker lines 
correspond to the PSD averaged over all regions and subjects. The shaded region corresponds to the 90% confidence interval for the mean PSD 
(over all subjects) for different regions. B: Spatial distribution of the empirical (left) and SGM (right) alpha frequency band, for subjects with mean 
spatial correlations in controls (top) and patients with AD (bottom). The color scale of each spatial distribution was chosen based on their dynamic 
range. C: Spectral correlations of model fitting for controls and patients with AD. D: Spatial correlations of model fitting for controls and patients 
with AD
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as a covariate, we found that patients with AD have sig-
nificantly elevated long-range excitatory time constant 
( τG ; controls mean = 7.50 ms, confidence interval = (6.32 
ms, 8.68 ms), AD mean = 13.90 ms, confidence interval = 
(12.72 ms, 15.09 ms), Cohen’s D effect size = 1.16), local 
excitatory time constant, ( τe ; controls mean = 11.88 ms, 
confidence interval = (10.36 ms, 13.41 ms), AD mean 
= 15.01 ms, confidence interval = (13.48 ms, 16.53 ms), 
Cohen’s D effect size = 0.41) and local inhibitory neu-
ral gain ( gii ; controls mean = 0.26, confidence interval = 
(0.16, 0.36), AD mean = 0.46, confidence interval = (0.36, 
0.56), Cohen’s D effect size = 0.42; Fig. 3A, B, and C). The 
highest effect size among the parameter comparisons was 
found in τG between AD and controls. Collectively these 
results indicate that while global network parameters are 
altered in AD, long-range excitatory connections may 
reflect such changes with greater sensitivity than other 
parameters.

Altered long‑range excitatory connections are correlated 
with global cognitive deficits in patients with AD
To investigate the association between altered global 
network parameters and cognitive deficits in patients 
with AD, we examined the correlations between τG , τe , 
and gii with global cognitive decline measured by Mini 
Mental State Exam (MMSE), and overall disease sever-
ity measured by clinical dementia rating sum of boxes 
(CDR), in patients with AD. We first tested for univariate 
associations between the model parameters and MMSE 
and CDR separately, using linear regression. After 
adjusting for multiple testing (Bonferroni), τG showed 
significant negative associations with MMSE (Fig.  3D) 
where higher τG predicted greater cognitive deficits in 
MMSE. Next, we tested for the association between τG 
and MMSE including τe , gii , and age as covariates in a 
multivariate linear regression model. This multivariate 
analysis also showed a significant negative association 
between τG and MMSE only ( p = 0.007 for the associa-
tion between τG and MMSE, model r = 0.402 , model 
adjusted r2 = 0.121 , F = 3.961 ). Similar to the univariate 
results, none of the parameters were significantly associ-
ated with CDR in a multivariate regression model after 
adjusting for multiple testing. Details of statistics are 
mentioned in the Supplementary Tables S1 and S2.

Altered global network parameters can distinguish 
between AD and controls with high accuracy
Next, we examined the sensitivity and specificity of 
altered global network parameters to distinguish between 
patients with AD and controls. To this end, we trained 
and tested a random forest classifier including the model 
parameters and age as the classifier features. The average 
AUC of the ROC curves from the testing folds is 0.85, 

with a standard deviation of 0.02 (Fig.  3G). The other 
classification metrics included: accuracy = 0.78, precision 
= 0.79, recall score = 0.75, and f1 score = 0.77, on aver-
age. The confusion matrix is shown in Supplementary 
Fig. S7. We also obtained the feature importance score of 
the features used in training the model, shown in Fig. 3H. 
The time constant τG was the most important feature in 
classifying AD versus controls. Collectively, these results 
indicate that altered global network parameters are reli-
able indices to identify patients with AD from their age-
matched counterparts and that long-range excitatory 
connections are the most sensitive indicators of AD-
related global network deficits.

We also compared the performance of the SGM param-
eters against other measures, shown in the Supplemen-
tary Fig. S8. First, we used MEG PSD features directly to 
train a classifier. The mean AUC of the ROC curves from 
the testing folds of this classifier was 0.9. This is expected 
because SGM is fitting to this data and therefore cannot 
perform better than the data it is fitting to. Second, we 
used MMSE as a feature to train a classifier separately. 
The mean AUC of the ROC curves of this classifier was 
0.95. This is also expected because MMSE scores closely 
reflect the Clinical Dementia Rating scores which were 
used to classify AD from controls in the first place. Third, 
we used mean hippocampal volume as a feature to train 
a classifier separately. The mean AUC of the ROC curves 
of this classifier was 0.73. Note that the aim of this study 
is not to obtain the best classifiers of AD, but to identify 
“biophysically interpretable” markers of AD. Therefore, 
even though the classification mean AUC drops when 
using SGM parameters instead of MEG PSD or MMSE 
as features, using SGM parameters have an added advan-
tage of interpretability. Also note that the classifier needs 
to be trained on a higher dimensional data when using 
MEG PSD (340 features), as compared to using SGM 
parameters (7 features).

Minimal set of altered model parameters capture 
the empirical power spectral density patterns in AD
In order to assess the importance of model parameters 
in capturing the empirical PSD, we evaluated the spec-
tral and spatial correlations after optimizing for cer-
tain model parameters, based on their importance from 
Fig. 3H, while keeping the remaining model parameters 
as the average of all the optimized model parameters for 
AD and controls together. First, we evaluated the correla-
tions when none of the model parameters are optimized 
for and are all the average of the optimal parameters 
obtained previously. Next, we optimized only for τG while 
keeping all the other model parameters fixed since τG 
was the most important parameter in the classification 
of AD vs controls. Subsequently, we optimized for both 
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τG and τe while keeping the remaining model param-
eters fixed since τe was the second most important fea-
ture in classification. We repeated this procedure till we 
included all the model parameters for optimization. The 

spectral correlations from this evaluation are reported 
in Fig. 3I. As seen in the figure, we see a sharp increase 
when τG is allowed to vary while keeping the other model 
parameters fixed. Upon including the subsequent model 

Fig. 3 A, B, C: Statistical significance testing of difference in model parameters between AD and controls, with age as a covariate. Distribution of A: 
long-range parameters τG (long-range excitatory time constant), v (speed), and α (coupling constant); B: local time constants τe (excitatory) and τi 
(inhibitory); and C: local neural gains gii (inhibitory gain) and gei (gain of signals from the coupling between excitatory and inhibitory neurons). 
P-values are reported after correcting for multiple testing using a Bonferroni correction. ∗ : p < 0.05 , ∗ ∗ ∗ : p < 0.001 . D, E, F: Univariate associations 
of D: τG , E: τe , and F: gii with MMSE in patients with AD. G, H: Classification of AD vs controls with a random forest classifier with SGM parameters 
and age as features of the classifier. G: ROC curve for classification of AD versus controls. H: Feature importance plot of SGM parameters. I: Spectral 
correlations when optimizing for only certain model parameters while keeping the others fixed at the average of the optimized model parameters 
of both AD and controls. “None” implies that all the model parameters were fixed at the average. The second point on the x-axis with the label τG 
implies that only τG was allowed to be optimized while the other model parameters were fixed at the average values. The third point on the x-axis 
with the label τe implies that both τG and τe were allowed to be optimized while keeping the other model parameters fixed at the average values. 
All the subsequent points on the x-axis correspond to similarly including more model parameters in optimization, based on their importance 
in the classification of AD vs controls
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parameters, we do not see a substantial increase in the 
spectral correlation. This result strengthens our prior 
observation on the importance of τG in differentiating AD 
from controls. Note that we did not see any substantial 
difference in the spatial correlations.

Discussion
In this study, we determined local and long-range neu-
ronal parameters of a computational model of brain 
activity that can account for abnormal neurophysiologi-
cal activity in AD observed in high spatio-temporal res-
olution MEG imaging. We used SGM, which is ideally 
suited for this exploration providing a computational link 
between structure and function in the brain. The neu-
ronal time constant associated with long-range excitatory 
connections was the most sensitive biophysical prop-
erty that mediates abnormal global network dynamics in 
patients with AD. The long-range excitatory time con-
stant not only predicted the global cognitive deficits in 
AD patients but also classified AD versus controls with 
high accuracy. To our knowledge, this is the first report of 
a single global parameter change that can reliably repro-
duce spatial and spectral activity patterns in patients with 
AD and is also correlated with cognitive deficits. These 
findings provide critical insights about potential mecha-
nistic links between abnormal neural oscillations and cel-
lular correlates of impaired neuronal activity in AD.

Biophysical significance of significantly altered neuronal 
parameters
The parameters that were differentially distributed in 
AD were the excitatory time constants τG and τe , and 
inhibitory neural gain gii . Each parameter has a distinct 
biophysical meaning, and clear implications in AD patho-
physiology, as discussed below.

Long-range time constant. The most important dif-
ferential parameter was the long-range excitatory time 
constant τG , which was (1) increased in AD; (2) capable of 
recapitulating the spectral shift seen in AD patients; (3) 
the most important feature in classifying AD from con-
trols. Higher τG in AD indicates the slowing of long-range 
brain-wide communication of neural activity, implicating 
primarily the large layer-specific pyramidal glutamater-
gic neurons  [39]. These pyramidal neurons are known 
to be selectively vulnerable in AD [40]. This result is also 
in concordance with a recent study demonstrating long-
range axonal connectivity disruption in AD transgenic 
mice  [41]. Increased pyramidal neuron time constants 
have also been reported in AD mouse models [42].

We also found that τG is also associated with global 
cognitive deficits in AD patients. This implicates impair-
ment in the synaptic processing of long-range excitatory 
neurons, a potential factor contributing to increased τG in 

AD. Our recent study showed that alpha hyposynchrony 
is correlated with the degree of global cognitive dys-
function in patients with AD  [27]. Another MEG-based 
study also demonstrated that oscillatory slowing predicts 
general as well as domain-specific cognitive function in 
patients with AD  [21]. While such associations can be 
obtained using neuroimaging data directly, here we were 
able to identify a specific biophysically grounded param-
eter, τG , that can potentially explain these biological rela-
tionships. Linking biophysical processes to clinical scales 
has historically been extremely challenging for conven-
tional machine learning approaches due to the mismatch 
in dimensionality between input features (thousands) 
and output features (a handful of clinical measures). 
Increased long-range time constant in AD capable of 
recapitulating the spectral shifts in AD and correlated 
with MMSE, therefore, may be the first report of a sin-
gle biophysical correlate accounting for clinical deficits in 
patients with AD.

Local excitatory time constant. Interestingly, the local 
excitatory neural time constant was also significantly 
different in patients, whereas local inhibitory time con-
stant was not. Local excitatory-inhibitory imbalances in 
AD have been demonstrated in numerous basic science 
studies  [20, 43]. Our results are therefore broadly con-
sistent with these studies, although with smaller effect 
sizes compared to the long-range time constant param-
eter. Among the local parameters, the strongest relation-
ship was found with the local excitatory time constant 
τe , which was higher in AD subjects than in controls, 
consistent with our previous findings. While higher τe 
implies the slowing of excitatory signals at the local level, 
we previously demonstrated that increased τe is distinctly 
associated with tau accumulations in AD [20]. The rela-
tionship between spatially invariant long-range excita-
tory time constant and regional tau accumulation in AD 
remains to be elucidated.

Local inhibitory neural gain. We found that the inhib-
itory neural gain gii is higher in patients with AD than in 
controls. Higher gii implies a higher synaptic strength 
of the inhibitory neuronal connections within a region. 
Alteration in the neural gain term indicates a neuronal 
excitatory-inhibitory imbalance; such an imbalance has 
been reported in various preclinical AD models [44–46]. 
However, the current finding is at odds with some prior 
findings in AD. Previously, we tested the hypothesis that 
local changes in model parameters could recapitulate 
regional spectral shifts in AD patients. Using a local cir-
cuit model fitting procedure (as compared to the current 
global network model) our group had previously reported 
that the local subpopulation in AD showed reductions in 
inhibitory gains [20]. It may be considered counterintui-
tive that patients with AD would have stronger inhibitory 
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neuronal connections when interpreting gii as a measure 
of hyperexcitability. This discrepancy warrants further 
study in the future, but we may offer some possibilities. 
The inhibitory gain gii interacts with other model param-
eters of SGM in a complex manner perhaps even more 
than what is seen in the local decoupled model. While 
hyper-excitability is consistently seen in AD, its relation-
ship to gii remains an open question. SGM can achieve 
hyperexcitability even if gii is high, depending on the 
other model parameters. It is further possible that a few 
specific regions experience reduced inhibitory gain while 
other, more widespread areas experience a net increase 
thereof. Nevertheless, it should be noted that the effect 
size of gii was only moderate in comparison to τG ’s effect 
size in the current study.

While the SGM parameters were derived only from 
neuroimaging data, the range of these parameters are 
similar to the estimates from other means. The bounds 
for the time constants, speed, and long-range connectiv-
ity coupling constant are explained in detail in  [35] and 
below. The time constants in SGM correspond to the 
average neural ensemble response functions that capture 
delays not just due to membrane capacitance or dendritic 
arborization, but also due to all the local circuit delays. 
Thus, we expect the time constants to be of the order of 
tens of milliseconds. Neural responses in the ferret V1 
were reported 20 ms after a short virtual stimulus  [47]. 
Moreover, cortical depolarization evoked by a brief 
deflection of a single barrel whisker in the mouse was 
reported to spread to parts of sensorimotor cortex within 
tens of milliseconds [48, 49]. Excitatory/inhibitory synap-
tic time constants derived from cortico-cortical evoked 
potentials and mathematical modeling were approxi-
mately 5 and 7 ms, respectively [50]. The bounds for the 
neural gain terms and alpha were set to ensure that the 
model is stable.

Global network effects versus local circuit effects
Two competing hypotheses can potentially account for 
the spatial and spectral abnormality patterns in AD: spa-
tially variant effects of local circuits, and spatially invari-
ant global network effects which is the focus of this study. 
Due to the highly specific spatial topography of AD 
pathology [51], prior literature has broadly focused on the 
neural correlates of local circuits as the primary means of 
describing observed electrophysiological data  [43]. In a 
recent study, we tested the hypothesis that local changes 
in model parameters could recapitulate regional spectral 
shifts in AD patients. We also reported that alterations in 
local excitatory and inhibitory parameters are distinctly 
associated with tau and amyloid-β accumulations in AD 
patients [20]. The current study addresses a very different 
hypothesis: that observed spatiospectral changes in AD 

patients may be explained by global changes in the net-
work, as compared to spatially-varying changes in local 
neural masses. While the two hypotheses on global net-
work versus local circuit effects in AD are not mutually 
exclusive, our key contribution here is to show that global 
changes are sufficient to recapitulate the observed spatial 
and spectral abnormalities in AD. A previous modeling 
study also found differences in both coupling and local 
circuits [52]. Even though AD may induce both local and 
global changes, it is possible that the latter may dominate, 
as previously noted from a modeling perspective [53–57] 
and from our results indicating long-range τG as the most 
important parameter. Heterogeneity of the Amyloid-β 
load was previously found to be essential to simulate the 
slowing of rhythm  [58], but we have demonstrated that 
spatial variations of any kind in our model are not needed 
to capture the spectral and alpha-band spatial patterns. 
This certainly leaves room for the possibility that the 
SGM will be enriched by including the spatial patterns of 
Amyloid-β and tau. Future explorations of the respective 
contributions of local versus global network changes in 
AD will be critical.

This local versus global distinction also means that 
our current results are not directly comparable to prior 
spatially-variable modeling results. Both the long-range 
( τG ) and the local ( τe and gii ) parameters in our SGM 
model showed significant group differences, but we did 
not reproduce other local changes reported, e.g., in [20]. 
Nevertheless, τe being higher in AD in both the local as 
well as global study indicate a common underlying mech-
anism involving excitatory neuronal subpopulations at 
both local and global level in AD.

Relationship to previous modeling works
Even though no mathematical model can capture the 
complex brain structure-function relationship com-
pletely, many can aid in identifying mechanisms that can-
not be inferred with neuroimaging data alone. Indeed, 
various model-based markers of AD have also been 
shown in the past. For example, the Virtual Brain Mod-
eling platform has been used to estimate local and global 
parameters of a neural mass model for fMRI and to sub-
sequently differentiate between AD and controls  [52]. 
While the literature on fMRI studies in AD is vast, com-
parable depth is lacking in the use of higher frequency 
data like MEG. In our work, we focus on MEG because 
it provides us with a high temporal resolution and can 
give insights into oscillatory signatures, especially the 
spectral and spatial patterns thereof, that are directly 
linked to cellular mechanisms. A neural mass modeling 
approach attributed slowing of alpha in AD using MEG 
to neuronal hyperactivity, though without directly fitting 
to the empirical data  [59]. Another modeling approach 
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examined different stimulation strategies to preserve 
functional network integrity in AD and found that stimu-
lating excitatory neurons were the most successful  [60]. 
Another virtual brain simulation approach integrated 
local field potential simulations with regional amyloid-β 
and tau uptake as empirical features to classify healthy 
controls, MCI, and AD and obtained an average F1 score 
of 0.743  [61] – our study reports a higher F1 score of 
0.77 for classification of AD from controls with just a few 
parameters as features of a random forest classifier.

A key difference from prior modeling approaches is that 
our SGM is a linear model with a small set of biophysi-
cally interpretable global parameters. Therefore, it can 
be obtained in a closed-form solution in the frequency 
domain, and model parameter inference is more tracta-
ble. We employed SGM because prior studies indicate 
that the emergent macroscopic activity is independent 
of the microscopic activity of individual neurons [53–57, 
62], and is primarily governed by the long-range con-
nections  [63–66]. Indeed, it was already demonstrated 
that SGM outperforms a Wilson-Cowan neural mass 
model in fitting the empirical MEG spectra [33]. A recent 
comparison showed that linear models outperformed 
non-linear models in predicting resting-state fMRI time 
series. This was attributed to the linearizing effects of 
macroscopic neurodynamics and neuroimaging due to 
spatial and temporal averaging, observation noise, and 
high dimensionality [67]. Given that the vast majority of 
computational models involving neural masses involve 
highly non-linear concepts like multistability, metasta-
bility, and other complex dynamics  [68–72], it may be 
questioned whether AD-induced changes in brain mac-
roscopic dynamics can even be reliably measured and 
robustly inferred. Instead, we expect that while neural 
activity in AD and health might be highly dynamic and 
non-linear, its macroscopic spatial and frequency pat-
terns are known to be far more stable across individu-
als [20, 27, 54, 73, 74]. This is a key motivation for our use 
of the linear and deterministic SGM, which has demon-
strable tractability and only a few free parameters capable 
of predicting spectral and regional profiles of MEG activ-
ity. To our knowledge, this is the first study identifying a 
parsimonious biophysically interpretable marker of AD 
and cognitive decline in AD.

Structural network harmonics are responsible 
for pathology transmission
It was previously shown by our group that the eigen-
decomposition of the graph Laplacian can be used to 
describe the spread of pathology as it ramifies within 
the brain’s anatomic connectivity network. It was dem-
onstrated that only the eigenmodes corresponding to 
the lowest eigenvalues - named “persistent modes” are 

involved in AD pathology progression  [75]. Since any 
aberration in local synchrony explored here must arise 
from the underlying progression of pathology in the 
AD brain, it is expected that the same or similar eigen-
modes responsible for pathology progression may also 
be involved in aberrant synchrony. The SGM too can be 
decomposed into a small set of eigenmodes (see Eq.  1). 
Remarkably, it was recently shown by our group that the 
lowest few eigenmodes of the SGM capture a large por-
tion of the spatial distribution of alpha-band power [34], 
and are also important in explaining low-frequency 
long-range synchrony from fMRI  [76]. This striking 
resemblance of eigenmodes of both pathological and 
electrophysiological processes establishes a conceptual 
bridge that has been hitherto unknown.

Alternative neuroimaging modalities for capturing 
synchrony
Resting-state functional MRI (fMRI), which measures the 
slow fluctuations of blood oxygenation signal in the brain 
as a proxy for neural activity [77], is also widely used to 
identify abnormal synchrony in AD. Leveraging graph-
theoretic analyses, many studies now routinely describe 
the alterations in fMRI measures during the course of AD 
pathophysiology [51]. However, graph theoretic statistics 
of resting-state fMRI have shown inconsistent differences 
between patients with AD and healthy controls  [78]. In 
addition, fMRI is limited in its ability to capture fast tem-
poral scales of neuronal activity  [79]. Electrophysiologi-
cal techniques such as E/MEG address this limitation by 
capturing temporal activity scales with millisecond preci-
sion, though with a lower spatial resolution. Leveraging 
their temporal resolution, E/MEG can be used to infer 
the dynamic neural activity directly [80].

Limitations
To determine the shape of the power spectra we used 
Pearson’s R as the cost function. Future studies should 
aim at capturing the magnitude as well as selected spec-
tral features. Here we employed the same template 
structural connectome from HCP for both cohorts, 
as it allowed us to pinpoint the biophysical alterations 
solely due to functional alterations. A prior study has 
also demonstrated that white matter network organiza-
tion is preserved in AD [81]. However, it will be ideal to 
obtain individual structural connectomes in all individu-
als. In addition, we observed that the SGM fits better to 
spectral and spatial patterns from AD rather than from 
controls. This may be attributed to the spectral shape of 
AD – it has a clearer exponential fall-off that is easier to 
fit to. In comparison, the spectral shape of controls has 
an additional peak in the beta band superimposed on 
the exponential fall-off. Lastly, we note that even though 
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no mathematical model can capture the complex brain 
structure-function relationship completely, many can aid 
in identifying mechanisms that cannot be inferred with 
neuroimaging data alone.

Since the most important indicator of AD was a long-
range global parameter, a key question arises whether this 
result is because of potential inherent bias in the model 
for long-range effects. This bias towards long-range 
effects will be more prominent in cases where differences 
in spatial patterns are the most important features to cap-
ture with the model. In the case of this paper, the most 
prominent pattern changes that we focused on were the 
spectral pattern changes, especially the spectral slowing 
in AD. Such spectral changes can be impacted by both 
global and local parameters. Indeed, the local parameters 
were also significantly different between AD and controls 
although with a smaller effect size. Also, while we fit our 
model to match the spatial pattern of the alpha frequency 
band as well, there were no prominent differences in the 
spatial patterns between AD and controls. Therefore, it 
is unlikely that the inherent bias towards global effects 
would have impacted the model parameter estimation in 
this case.

Conclusion
This work suggests that a global impairment in the excit-
atory long-range pyramidal neuronal population is an 
important indicator of AD, and is also associated with 
global cognitive decline in patients with AD. Intriguingly, 
our work is able to recapitulate the spatial and spectral 
patterns of AD-related functional activity without intro-
ducing any spatial heterogeneity; indeed, the SGM model 
is entirely global and spatially-invariant. This raises the 
possibility that a global increase in the long-range excita-
tory time constant might be a sufficient factor underlying 
observed spatiotemporal alterations of neuronal activity 
in AD. This modeling approach highlights a parsimoni-
ous framework for identifying cellular biomarkers of 
abnormal electrophysiological oscillations and cogni-
tive deficits in AD, that can aid in guiding future clinical 
trials.
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