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Abstract 

Background Functional connectivity (FC) biomarkers play a crucial role in the early diagnosis and mechanistic study 
of Alzheimer’s disease (AD). However, the identification of effective FC biomarkers remains challenging. In this study, 
we introduce a novel approach, the spatiotemporal graph convolutional network (ST-GCN) combined with the gradi-
ent-based class activation mapping (Grad-CAM) model (STGC-GCAM), to effectively identify FC biomarkers for AD.

Methods This multi-center cross-racial retrospective study involved 2,272 participants, including 1,105 cognitively 
normal (CN) subjects, 790 mild cognitive impairment (MCI) individuals, and 377 AD patients. All participants under-
went functional magnetic resonance imaging (fMRI) and T1-weighted MRI scans. In this study, firstly, we optimized 
the STGC-GCAM model to enhance classification accuracy. Secondly, we identified novel AD-associated biomarkers 
using the optimized model. Thirdly, we validated the imaging biomarkers using Kaplan–Meier analysis. Lastly, we 
performed correlation analysis and causal mediation analysis to confirm the physiological significance of the identi-
fied biomarkers.

Results The STGC-GCAM model demonstrated great classification performance (The average area under the curve 
(AUC) values for different categories were: CN vs MCI = 0.98, CN vs AD = 0.95, MCI vs AD = 0.96, stable MCI vs progres-
sive MCI = 0.79). Notably, the model identified specific brain regions, including the sensorimotor network (SMN), visual 
network (VN), and default mode network (DMN), as key differentiators between patients and CN individuals. These 
brain regions exhibited significant associations with the severity of cognitive impairment (p < 0.05). Moreover, the top-
ological features of important brain regions demonstrated excellent predictive capability for the conversion from MCI 
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to AD (Hazard ratio = 3.885, p < 0.001). Additionally, our findings revealed that the topological features of these brain 
regions mediated the impact of amyloid beta (Aβ) deposition (bootstrapped average causal mediation effect: β = -0.01 
[-0.025, 0.00], p < 0.001) and brain glucose metabolism (bootstrapped average causal mediation effect: β = -0.02 [-0.04, 
-0.001], p < 0.001) on cognitive status.

Conclusions This study presents the STGC-GCAM framework, which identifies FC biomarkers using a large multi-site 
fMRI dataset.

Keywords Alzheimer’s disease, Imaging biomarkers, Functional connectivity, Graph neural network, Multi-site

Background
Alzheimer’s disease (AD) is a prevalent neurodegenera-
tive disorder responsible for 60–80% of dementia cases 
[1]. To achieve early clinical diagnosis and quantify the 
stage of the disease, it is crucial to identify potential 
biomarkers or neuroimaging indicators [2]. Ongoing 
research focuses on utilizing various neuroimaging tech-
niques, including magnetic resonance imaging (MRI) 
[3–5], functional magnetic resonance imaging (fMRI) [6], 
positron emission tomography (PET) [7], and computed 
tomography (CT) [8], to detect AD-related biomarkers 
and enable early diagnosis.

Resting-state fMRI (rs-fMRI) is instrumental in cap-
turing brain activity by detecting changes in blood oxy-
gen levels. It has been extensively utilized in identifying 
imaging markers related to AD and has revealed AD to 
be a "functional disconnection syndrome" [9]. Research 
reports have consistently demonstrated reduced FC in 
specific brain regions, including the posterior cingu-
late cortex, medial prefrontal cortex, inferior parietal 
cortex, inferior temporal cortex, and hippocampus, in 
patients with AD [10, 11]. However, conventional brain 
functional network analysis methods typically focus on 
group comparisons between patients and healthy con-
trols [12]. Given the presence of individual differences in 
AD pathology arising from factors like age, sex, genetics, 
and ethnicity, the challenge lies in establishing objective 
and stable FC biomarkers that account for the heteroge-
neity in brain functional network patterns. Additionally, 
the inclusion of large sample sizes is vital to ensure the 
overall representativeness of models and provide reliable 
information about the underlying biological basis. Con-
sequently, there is a growing emphasis on the integration 
of multi-factor analysis using combined datasets from 
large samples [13].

Deep learning methods have gained prominence in 
medical imaging analysis as they can automatically cap-
ture high-dimensional features [14–16]. For instance, 
convolutional neural networks (CNNs) have demon-
strated significant efficacy across diverse tasks, notably 
in applications like AD classification [17]. Nonetheless, 
employing CNN models to model fMRI data presents 

specific challenges. These include the constraint of spatial 
features to a limited neighborhood in Euclidean space, 
particularly noticeable in shallow CNN models. Moreo-
ver, brain region distributions are irregular, posing chal-
lenges in capturing intricate connectivity features [18]. 
Therefore, fMRI exhibits intricate spatiotemporal interac-
tion patterns that cannot be adequately captured through 
CNN [19]. In the context of brain connectivity patterns, 
graph convolutional neural networks (GCNs) have been 
proposed for processing brain connectivity networks due 
to their structural compatibility [20]. GCN analyzes the 
graph structure and node characteristics by performing 
graph convolutions, effectively capturing more discrimi-
native features [21]. Currently, numerous researchers 
have combined GCN and fMRI for AD diagnosis. For 
example, Mei et  al. [22] proposed a hierarchical GCN 
model for MCI diagnosis. Addressing the integration of 
spatiotemporal information within brain networks, Wang 
et  al. [23] sampled fMRI in adjacent space and time to 
learn spatial–temporal features. In [24, 25], spatial and 
temporal features were derived by employing GCNs and 
Recurrent Neural Networks (RNNs), respectively. How-
ever, existing GCN models for AD diagnosis exhibit two 
notable limitations: (1) The current GCN models fail to 
seamlessly integrate spatiotemporal information, result-
ing in a compromise to the continuity of fMRI data; (2) 
These models cannot precisely identify brain regions as 
biomarkers in disease classification.

Therefore, we propose a novel model called spatiotem-
poral graph convolution combined with gradient-based 
class activation mapping (STGC-GCAM) to identify 
imaging biomarkers for AD and its stages. In this model, 
spatial–temporal GCN (ST-GCN) obtains disease diag-
nostic features by integrating spatiotemporal informa-
tion from the brain’s functional connection network [26]. 
Specifically, spatial convolutions operate on the spatial 
dimension, while temporal convolutions operate on the 
temporal dimension [27]. The gradient-based class acti-
vation mapping (Grad-CAM) technique assigns weights 
to nodes based on gradient information of specific 
classes, thereby highlighting the contribution of impor-
tant nodes.
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In this study, our objective was to identify novel FC 
biomarkers for AD using the STGC-GCAM model. We 
employed a large multi-site dataset comprising 2272 
participants. The first hypothesis posits that the STGC-
GCAM model can detect abnormal brain regions at the 
network level using fMRI data. The second hypothesis 
suggests that the ST-GCN approach can reveal network 
topological defects associated with clinical variables. To 
validate these hypotheses, the STGC-GCAM model was 
trained on brain FC networks to characterize AD patients 
and their stages (mild cognitive impairment (MCI), stable 
MCI (sMCI), progressive MCI (pMCI)). Additionally, the 
study identified significant brain regions that contribute 
to accurate classification.

Methods
Participants
Our study utilized three cohorts: cohort I from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) data-
base (http:// adni. loni. usc. edu/), cohort II from the Sino 
Longitudinal Study on Cognitive Decline (SILCODE) at 
Xuanwu Hospital of Capital Medical University in Bei-
jing, China, and cohort III from Tongji Hospital in Shang-
hai, China. The data from the three cohorts were divided 
into six sites based on the length of the fMRI time series. 
The study included 1,105 cognitively normal (CN) partic-
ipants, 790 participants with MCI, and 377 participants 
with AD. Comprehensive data, including demographic 
information (gender, age, education level), neuropsy-
chological assessments (mini-mental state examination 
(MMSE), the sum of boxes of clinical dementia rating 
scale (CDR-SB)), cerebrospinal fluid tau/phosphoryl-
ated tau (CSF TAU/PTAU), fMRI, and T1-weighted MRI 
data, were collected for all participants. Specifically, fMRI 
is utilized for model training, T1 data is employed for 
registration during fMRI preprocessing, and additional 
data modalities are used for result validation and analy-
sis. Additionally, for cohorts I and II, we investigated the 
conversion of MCI participants to AD within a 3-year 
timeframe to validate the model’s effectiveness in differ-
ent tasks. Further details are provided in Table 1.

Cohort I consisted of 579 CN, 222 AD, and 476 MCI 
participants, including 378 participants with sMCI and 
97 participants with pMCI. APOE ε4 and amyloid beta 
(Aβ) information were also collected from participants in 
cohort I, following the diagnostic criteria described in the 
ADNI manual (http:// www. adni- info. org). The inclusion 
criteria for MCI patients from the ADNI database have 
been previously reported [28]. Please refer to the supple-
mentary material (Participants: Cohort I) for more details.

The SILCODE project aims to diagnose subject cog-
nitive decline (SCD) and MCI in the early stages of AD 

using multimodal data, including clinical information, 
neuropsychological assessment, biological markers, and 
neuroimaging [29]. Cohort II consisted of 389 CN indi-
viduals, 56 AD patients, and 167 MCI patients, includ-
ing 98 participants with sMCI and 69 participants with 
pMCI. APOE ε4 and Aβ information was also collected 
from the participants. The inclusion criteria for cohort II 
data were previously reported [30], and the entry crite-
ria for CN individuals [29] and the diagnostic criteria for 
AD dementia [31] and MCI [32] were in accordance with 
established guidelines. Please refer to the supplementary 
material (Participants: Cohort II) for more details.

Cohort III, obtained from Tongji Hospital, consisted 
of 143 CN individuals, 99 AD patients, and 147 MCI 
patients. However, data in cohort III did not include 
information on APOE ε4 and Aβ, and there was no avail-
able follow-up information. Diagnoses for all participants 
were made by experienced clinical physicians, with MCI 
primarily diagnosed based on neuropsychological testing 
[33] and AD diagnosed according to the criteria estab-
lished by the National Institute on Aging (NIA) [34].

The fMRI data exclusion criteria and inclusion flow-
charts are provided in the supplementary material (Figure 
S2-S4). Ethical approval for all studies was obtained from 
the respective institutional review committees, and written 
informed consent was obtained from each participant.

Neuroimaging acquisition and preprocessing
Participants in this study underwent fMRI and T1-MRI 
scans. Detailed information regarding the scanning 
equipment and acquisition parameters for each site can 
be found in the supplementary material (Table S3). A 
standardized image preprocessing protocol was applied 
using the Data Processing Assistant for Resting-State 
fMRI (DPARSF) (http:// restf mri. net/ forum/ DPARSF) 
[35, 36]. The first ten volumes of the fMRI data were 
discarded to achieve magnetization balance, and the 
remaining volumes underwent correction for slicing time 
and realignment to the first volume for head motion. Par-
ticipants exceeding the thresholds of 3.0 mm translation 
and 1.0° rotation were excluded (see Figure S2-S4). Reg-
istration was performed by aligning the functional image 
to the T1 images. Subsequently, normalization to Mon-
treal Neurological Institute (MNI) space was carried out 
with a spatial resolution of 3 mm × 3 mm × 3 mm. Base-
line drift removal was performed, and the fMRI images 
were corrected for 24 head movement parameters to 
mitigate nuisance signals and account for head motion 
effects. Furthermore, regression of white matter and cer-
ebrospinal fluid signals was conducted to attenuate res-
piratory and cardiac effects. The resulting images were 
temporally filtered (0.01–0.08 Hz) and spatially smoothed 

http://adni.loni.usc.edu/
http://www.adni-info.org
http://restfmri.net/forum/DPARSF
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(6 mm FWHM Gaussian kernel). In the multi-site con-
text, various factors including age, gender, different scan-
ners, acquisition parameters, and inter-site confounding 
effects can influence the analysis. Despite employing 
the same image processing method, eliminating cross-
site nuisance variables remains challenging and can sig-
nificantly impact the performance of the model [13]. To 
address this issue, we adopted ComBat harmonization, a 
method commonly used in genomic studies [37].

Network Architectures of STGC-GCAM
We employed ST-GCN to analyze fMRI data, capturing 
both temporal and spatial information. This approach 
allowed for the extraction of detailed features to aid in 
early diagnosis of AD. To identify relevant brain regions 
associated with AD and its stages, we introduced the 
STGC-GCAM model. Figure  1 illustrates the study’s 
workflow, highlighting the architecture of the STGC-
GCAM model designed specifically for processing fMRI 
images (Fig. 1(d), and Figure S1).

Brain network construction
To construct the individual dynamic FC brain network 
from fMRI data, we created a weighted undirected spa-
tiotemporal graph G ={V, E, A} . The graph G consists 

of nodes |V| = N and edges E containing spatiotempo-
ral information, represented by the weighted adjacency 
matrix A ∈ R

N×N . N is the number of nodes, which in 
this study is also the number of brain regions. In this 
study, we used the Anatomical Automatic Labeling 
(AAL) atlas [38] to define 90 brain nodes and extracted 
the average blood oxygen level-dependent (BOLD) time 
series for each node. The adjacency matrix A was deter-
mined by calculating the Pearson correlation coefficient 
between the BOLD signals of different nodes [39]. Fig-
ure 1(c) illustrates the process of constructing the brain 
network using fMRI data. These constructed spatiotem-
poral graphs served as inputs for the STGC-GCAM 
model.

Spatiotemporal graph convolution
The STGC-GCAM model incorporates ST-GCN to 
extract valuable spatiotemporal features from fMRI data 
to aid in early AD diagnosis. The model takes node fea-
tures X and the adjacency matrix A as inputs. Where 
the node feature X ∈ R

T×N is represented as the BOLD 
of the node extracted from fMRI, T = 950 represents the 
number of time points of the node. The spatiotempo-
ral convolution is approximated by decomposing it into 
spectral-domain spatial graph convolution and temporal 

Fig. 1 Comprehensive workflow of the study. a Data collection from three centers: ADNI, Xuanwu Hospital, and Tongji Hospital. b fMRI 
preprocessing flow. c Graph representation construction based on fMRI. d Architecture of the STGC-GCAM model. e Visualization of imaging 
biomarkers using BrainNet Viewer. f Correlation analysis between topological features of disease-related brain regions and clinical indicators. 
g Survival analysis of MCI patients using imaging markers. h Investigation of the mediating effects of brain region topology characteristics 
on cognitive disorders caused by Aβ, tau, and neural variants
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convolution, as described in the reference [40]. Equa-
tions (1–2) represent the spatial graph convolution layer 
and temporal convolution, respectively.

where, Zj′

sg =∈ R
N×M represents the M-channel output 

features of the N nodes at the j-th layer of spatial convo-
lution, Relu( • ) is the rectifiers linear unit, D is a diagonal 
matrix, I represents the identity matrix, Zj

sg ∈ R
N×C rep-

resents the C-channel output features, Wsg ∈ R
C×M rep-

resents spatial graph convolution kernel. Zij′
tg =∈ R

M×Ŵ 
represents the output features of node i at the j-th layer 
temporal convolution, Zij

tg ∈ R
M×T represents the input 

feature of node i, Wtg ∈ R
M×Ŵ represents the temporal 

convolution kernel, Γ represents the size of the temporal 
convolution kernel. ⊗ represents convolution in the time 
domain.

In this study, we introduce a spatiotemporal graph 
convolutional unit, which combines spatial and tempo-
ral convolutions. Our model consists of three such units, 
with output channel numbers of 128, 64, and 32 for each 
layer. Following the convolutions, global average pooling 
and fully connected layers are utilized to obtain predicted 
probabilities for each class. For a more detailed introduc-
tion, please refer to the supplementary materials (Train-
ing strategy).

Imaging biomarker identification
We employed Grad-CAM to estimate the contribution 
of each brain region to classification. Grad-CAM is an 
improvement upon the class activation mapping (CAM) 
method [41] proposed by Zhou et  al. [42], enhancing 
its application and simplifying the model architecture. 
Incorporating Grad-CAM into ST-GCN has been sug-
gested in a recent study [43]. The spatiotemporal graph 
convolutional layer in ST-GCN captures local temporal 
and spatial information, reflecting the spatiotemporal 
importance of nodes. In Grad-CAM, the gradient infor-
mation from the last spatiotemporal graph convolutional 
unit is used to compute node importance for decision-
making. Detailed calculation procedures for Grad-
CAM (Figure S1). The algorithm flow of STGC-GCAM 
is described in Table S1, and parameter settings for the 
STGC-GCAM model can be found in the supplementary 
material (Table S2).

Training of STGC-GCAM model and comparison models
The performance evaluation of the STGC-GCAM 
model encompassed various tasks, including additional 

(1)Z
j′

sg = Relu D
− 1

2 (A + I)D− 1
2Z

j
sgWsg

(2)Z
ij′

tg = Relu

(

Z
ij
tg ⊗ Wtg

)

inter-group analyses involving CN and MCI, CN and 
AD, MCI and AD, as well as sMCI and pMCI, in addi-
tion to the primary analysis comparing CN and MCI 
patients. Hyperparameter tuning for the model was con-
ducted through fine-tuning using a grid search approach. 
In order to achieve better results, we trained the mod-
els separately on different classification tasks (CN vs. 
MCI, CN vs. AD, MCI vs. AD, sMCI vs. pMCI). Opti-
mal hyperparameters were determined via this method 
on the training set. A fivefold cross-validation strategy 
was adopted for both parameter tuning on the train-
ing set and for verifying the performance of the model 
on the test set. In this procedure, the entire dataset was 
initially partitioned into training sets (80%) and a test 
set (20%). The training set and test set were further sub-
divided into 5 subsets of roughly equal size. Since this 
research involves multi-center data, two points need to 
be ensured when dividing the data set: (1) the propor-
tion of positive and negative samples in the training set 
and the test set is consistent; (2) the proportion of each 
center in the training set and test set is consistent. Within 
the training set, one of the subsets was designated as the 
validation set, while the other four were employed for 
hyperparameter tuning. On the test set, the best model 
was identified using the 4 subsets and saved, with the 
final results obtained from the remaining subset. The 
classification results were averaged over all iterations to 
yield a comprehensive assessment of model performance 
across different tasks, quantified by metrics such as accu-
racy (ACC), sensitivity (SEN), specificity (SPE), and area 
under the curve (AUC).

To visualize the distribution of image features within 
a classification network, we employed t-distributed sto-
chastic neighbor embedding (t-SNE) [44]. Secondly, 
we utilized Grad-CAM to analyze the important brain 
regions of individual subjects and visualized the top 10 
important brain regions with the highest frequency using 
BrainNet Viewer [45]. Thirdly, we evaluated the classifi-
cation performance of the model using data from a sin-
gle site and compared its variability to that of the model 
trained on multicenter data. Fourthly, we compared the 
performance of the classification network with other 
classifiers, including GCN [13], which utilizes spectral 
graph convolution to operate on irregular graph data 
instead of Euclidean data. The input to GCN is the same 
as the input to ST-GCN. We also included BrainCNN 
[46], a CNN framework designed for predicting clini-
cal neurodevelopmental outcomes from brain networks, 
whose input is the adjacency matrix. In addition, we eval-
uated the performance of traditional machine learning 
classifiers, namely support vector machine (SVM), mul-
tilayer perceptron (MLP), logistic regression (LR), and 
random forest (RF), in the classification task. The input of 
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traditional machine learning methods only includes node 
features.

The Adam optimizer [47], implementing adaptive 
learning rates, was employed to update model weights. 
Additionally, a stepwise learning rate decay strategy was 
adopted in case validation accuracy plateaued, setting the 
minimum learning rate to 0.001 (0.01, 0.001). Evaluation 
on the validation dataset occurred after each training 
epoch, saving the model parameters only upon achiev-
ing improved validation accuracy. L2 regularization was 
integrated during training to mitigate overfitting. The 
ultimate performance metric was determined by select-
ing the highest accuracy achieved across distinct L2 regu-
larization values (0.1, 0.01, and 0.001). We implement the 
proposed STGC-GCAM based on Pytorch 1.11 (Python 
3.8) [48] and the model was trained using a single GPU 
(NVIDIA TITAN Xp with 12GB memory).

Imaging marker identification and validation
Each brain region identified using the Automated Ana-
tomical Labeling (AAL) atlas corresponds to a specific 
resting state network (RSN) [49]. The RSN extracted 
from the network templates consist of the default mode 
network (DMN), attention network (AN), sensorimotor 
network (SMN), subcortical network, and visual network 
(VN) (Supplementary Material Table S4). To evaluate the 
pathological interpretability of the STG-GCAM model, 
we analyzed the distribution of the identified important 
brain regions within the RSN. Additionally, we examined 
the correlation between the topological characteristics of 
these brain regions and disease severity using the Spear-
man correlation.

We employed a multifactor Cox proportional haz-
ards regression model to evaluate the predictive value of 
important brain region features as biomarkers for pre-
dicting progression from MCI to AD. The survival time 
of individuals with pMCI was defined as the duration 
between the baseline fMRI imaging time and the initial 
AD diagnosis or the last follow-up time for MCI subjects. 
The STGC-GCAM was used to identify disease-affected 
brain regions, from which features such as topological 
features, regional homogeneity (ReHo), and amplitude 
of low-frequency fluctuation (ALFF) were extracted as 
predictors. Three prediction models were constructed in 
this study: one based on ALFF, another based on ReHo, 
and the third on topological features. The topological 
feature-based model included nodal efficiency as a meas-
ure of information transfer efficiency between nodes in 
the network, encompassing both global (nodal efficiency, 
NE) and local (nodal local efficiency, NLE) measures [50]. 
Risk values derived from the models were used to stratify 
the sample into low-risk and high-risk groups. Survival 

analysis using Kaplan–Meier (KM) was conducted to 
compare the risk groups.

Causal mediation analyses
We performed mediation regression analysis on the site1 
and site2 datasets to investigate the extent to which the 
effects of biomarkers of significant brain regions on cog-
nitive status are mediated by the topological features. 
Four models were constructed using global AV45-PET 
SUVR, CSF TAU/PTAU, and FDG-PET SUVR as predic-
tor variables, estimating the direct and indirect (media-
tion) effects of the topological features of important brain 
regions on neurocognitive scale scores. According to the 
information provided by ADNI, the AV45-PET SUVR for 
the entire brain can be calculated by using the cerebel-
lum as a reference region. FDG-PET SUVR is the average 
FDG-PET of angular, temporal, and posterior cingulate. 
See Jagust LABS PDF on LONI for details. We adjusted 
for potential mediator-outcome confounders, includ-
ing age, sex, education years, and APOE ε4. To address 
the comparability of the data metrics, we standardized 
each variable in the analysis. All mediation analyses were 
conducted using the PROCESS module in SPSS, and the 
results were reported as unstandardized effect sizes [51]. 
We used bootstrap procedures with 5000 replications 
to compute a 95% bias-corrected bootstrap confidence 
interval (95% BCCI) for the indirect effects.

Statistical analysis
To investigate differences between groups in the variables 
listed in Table  1, we employed statistical tests appro-
priate for the data type. Specifically, the chi-square test 
was used for categorical variables, and the independent 
two-sample t-test was used for continuous variables. In 
the analysis of multi-site data, Spearman correlation was 
utilized to examine the relationship between important 
brain region features and neuropsychological assess-
ments in both the disease and normal groups. Hazard 
ratios and associated 95% confidence intervals (CI) were 
estimated using the Cox proportional hazards regression 
model. The log-rank test was used to assess between-
group differences in KM overall survival for MCI patients 
(high-risk and low-risk groups). All the above statistical 
analyses were performed using SPSS 25.0, and p-values 
less than 0.05 (two-tailed) were considered statistically 
significant.

Results
Demographic information and neuropsychological 
assessments
Table  1 shows the demographic and clinical informa-
tion of all participants. In site 1, significant differences 
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(p < 0.01) were observed between the CN and MCI 
groups and between the CN and AD groups in terms 
of education level, APOE ε4, Aβ, MMSE, and CDR-
SB, while there were no differences in gender and age. 
In site 2, there were significant differences (p < 0.01) 
between the CN and MCI groups, as well as the CN 
and AD groups, in terms of gender, age, education level, 
APOE ε4, Aβ, MMSE, and CDR-SB. In site 3, only the 
CN and AD groups showed no significant differences in 
APOE ε4, while significant differences were observed in 
other aspects between the CN and MCI groups, as well 
as between the CN and AD groups (p < 0.01). In site 4, 
there were significant differences (p < 0.05) between the 
CN and MCI groups as well as the CN and AD groups 
in terms of age, MMSE, and APOE ε4, with no signifi-
cant differences in gender and education level. In site 
5, there were significant differences (p < 0.05) between 
the CN and MCI groups in terms of education level and 
MMSE, with no significant differences in age and gen-
der; and significant differences (p < 0.05) between the 
CN and AD groups in terms of gender, education level, 
and MMSE, with no significant differences in age.

Evaluation of the performance of STGC-GCAM models 
and comparison models
We employed a fivefold cross-validation approach on 
ST-GCN to integrate data from multiple sites for the 
diagnosis of AD and its stages. the ST-GCN achieved a 
classification accuracy of 0.93 ± 0.001 (AUC = 0.98 ± 0.001) 
for CN and MCI. The accuracy for differentiating AD 
from CN was 0.90 ± 0.002 (AUC = 0.95 ± 0.002), while for 
differentiating AD from MCI patients, it was 0.92 ± 0.002 
(AUC = 0.96 ± 0.002). In addition, the accuracy for dis-
tinguishing between sMCI and pMCI was 0.85 ± 0.002 
(AUC = 0.79 ± 0.002) (Table  2). The scatterplot in Figure 
S5 shows the distribution of image features in a binary 
classification network.

In single-center-based classification tasks, we found 
that the classification accuracy of CN and MCI was 
between 0.62 to 0.84, the classification accuracy of CN 
and AD was between 0.66 to 0.93, the classification accu-
racy of MCI and AD was between 0.61 to 0.80, and the 
classification accuracy of sMCI and pMCI was between 
0.66 to 0.94 (Table S5). In addition, STGC-GCAM dem-
onstrates superior classification accuracy compared 
to other commonly used machine learning algorithms 
(SVM, RF, MLP, and LR), as well as BrainCNN and GCN, 
as shown in Table 2.

Imaging biomarkers identification
On the testing dataset, we identified the top ten brain 
regions with the highest frequency of severe damage 
(Table S6). These regions, namely the paracentral lobule, 

right inferior occipital gyrus, cuneus, left inferior occipi-
tal gyrus, right middle frontal gyrus, left middle frontal 
gyrus, right superior temporal gyrus, superior parietal 
gyrus, left superior temporal gyrus, and posterior cin-
gulate gyrus, had the greatest impact on differentiating 
between MCI patients and the CN group. These regions 
primarily belong to the SMN, VN, AN, and DMN net-
works. AD patients exhibited abnormalities mainly in 
the VN, SUBN, DMN, and SMN networks compared to 
the CN group. Furthermore, the distinctive brain regions 
between AD and MCI were primarily distributed in the 
VN, SMN, DMN, and AN networks, while the different 
brain regions between sMCI and pMCI were primarily 
distributed in the SMN, AN, DMN, and VN networks, 
respectively. The visualization of these important brain 
regions is presented in Fig. 2.

The features of the important brain regions predict 
the clinical progression of MCI to AD
The topological feature-based model demonstrated the 
strongest predictive capability (hazard ratio (HR) [95% 
confidence interval (CI)] = 3.885 [1.713–8.813], p < 0.001), 
followed by the ReHo-based model (HR [95% CI] = 3.487 
[1.692–7.187], p < 0.001). In contrast, the ALFF-based model 
showed poor performance (HR [95% CI] = 1.318 [0.760–
2.288], p = 0.235). As can be seen from Fig.  3, the ALFF 
model does not clearly differentiate between high-risk and 
low-risk individuals. The KM curves effectively differenti-
ated individuals with high-risk and low-risk profiles in the 
ReHo, and topological feature models, especially the topo-
logical feature model. In the topological feature model, the 
risk ratio of the included predictors is shown in Figure S6.

Correlation between topological characteristics 
and clinical measures
In the important brain regions identified by STGC-
GCAM, there is a significant correlation between the NE 
and MMSE score including paracentral lobule (r = 0.132, 
p < 0.0001), right inferior occipital gyrus (r = 0.053, 
p < 0.05), cuneus (r = 0.065, p < 0.01), left inferior occipital 
gyrus (r = 0.064, p < 0.01), right superior temporal gyrus 
(r = 0.067, p < 0.01), left superior temporal gyrus (r = 0.052, 
p < 0.05), and posterior cingulate gyrus (r = 0.053, p < 0.05) 
in both MCI and CN subjects. The NE in the right inferior 
occipital gyrus (r = 0.069, p < 0.05), left inferior occipital 
gyrus (r = 0.117, p < 0.0001), cuneus (r = 0.142, p < 0.0001), 
left middle occipital gyrus (r = 0.100, p < 0.001), right 
olfactory cortex (r = 0.080, p < 0.01), and paracentral lob-
ule (r = 0.160, p < 0.0001) were significantly correlated 
with MMSE score in both AD and CN subjects. AD and 
MCI subjects showed significant correlations between NE 
in the cuneus (r = 0.150, p < 0.0001), right inferior occipital 
gyrus (r = 0.117, p < 0.001), paracentral lobule (r = 0.151, 
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p < 0.0001), posterior cingulate gyrus (r = 0.102, p < 0.001), 
superior parietal gyrus (r = 0.101, p < 0.001), left inferior 
occipital gyrus (r = 0.109, p < 0.001), right middle frontal 
gyrus (r = -0.094, p < 0.01), and left middle frontal gyrus 
(r = -0.100, p < 0.01) and MMSE score. sMCI and pMCI 
subjects showed significant correlations between NE in 
the paracentral lobule (r = 0.142, p < 0.001), left superior 
temporal gyrus (r = -0.096, p < 0.01), posterior cingulate 
gyrus (r = 0.198, p < 0.0001), right precuneus (r = 0.077, 
p < 0.05), cuneus (r = 0.083, p < 0.05), and superior parietal 
gyrus (r = 0.080, p < 0.05) and MMSE scores (Fig. 4).

The topological features of important brain regions 
mediated the effects of biomarkers on cognition
By selecting the topological features of important brain 
regions as predictor variables, we found a significant cor-
relation between global AV45-PET SUVR and MMSE 
scores (β = -0.40, p < 0.001). This association was medi-
ated by NE (bootstrapped average causal mediation 
effect: β = -0.01 [-0.025, 0.00], p < 0.001) (Fig. 5(a)), indi-
cating a partial mediation effect. We observed significant 
differences in NE between the cognitively unimpaired 
(CU) and cognitively impaired (CI) groups (p < 0.001) 
(Fig. 5(b)). Furthermore, NE was significantly correlated 
with MMSE score (R = -0.10, p = 0.02) (Fig.  5(c)). Simi-
larly, we found that NLE partially mediated the effects of 
average FDG-PET SUVR of angular, temporal, and pos-
terior cingulate on participants’ cognition (bootstrapped 

average causal mediation effect: β = -0.02 [-0.04, -0.001], 
p < 0.001). There was a significant correlation between 
average FDG-PET SUVR of angular, temporal, and pos-
terior cingulate and CDR-SB scores (β = -0.58, p < 0.001) 
(Fig.  5(d)). There were significant differences in NLE 
between the CU and CI groups (p < 0.001) (Fig.  5(e)). 
Additionally, NLE was significantly correlated with CDR-
SB score (R = -0.15, p = 0.01) (Fig.  5(f )). No mediation 
effects were found between CSF TAU/PTAU, topologi-
cal features, and neurocognitive scales. It is worth not-
ing that significant correlations were observed between 
the topological features of important brain regions and 
CSF TAU (R = -0.21, p = 0.01) and CSF PTAU (R = -0.22, 
p < 0.01) (Figure S7).

Discussion
This study presents the STGC-GCAM model for identi-
fying novel FC biomarkers linked to AD. There are two 
innovative aspects of the model: (1) It utilizes ST-GCN 
to capture both temporal and spatial topological infor-
mation within the data channels; (2) It adds a Grad-CAM 
module to extract critical node information on the graph, 
effectively characterizing the brain regions impacted by 
the disease. In comparison to prior research (Table S7), 
our model demonstrates superior performance across 
multi-center datasets. The effectiveness of the proposed 
model was ensured and evaluated through experiments 
on a large dataset from six different sites, focusing on AD 

Fig. 2 Visualization of ten important brain regions with the most damage. In the subfigure, the upper main image shows the location of important 
brain regions in multiple perspectives. The lower sub-image illustrates the distribution of these regions within the RSN
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and its subtypes. The identified important brain regions 
for AD, MCI, sMCI, and pMCI were primarily distrib-
uted in the DMN, SMN, and VN. Post hoc analyses dem-
onstrated the excellent performance of the biomarkers 
in predictive experiments, supported by correlation and 
causal mediation effect analyses. These findings highlight 
the advantages of the STGC-GCAM model in personal-
ized case identification and biomarker extraction, indi-
cating its potential applicability in clinical settings.

While previous studies have demonstrated the disease 
identification capability and identification of important 
brain regions using GCN, our work presents significant 
advancements [13]. In this study, our model achieved an 
effective classification result on a large multi-center data-
set by proposing the STGC-GCAM, which simultane-
ously considers the spatio-temporal features of fMRI data 
and the importance of nodes. Specifically, the ST-GCN 
model effectively handles spatiotemporal information 
by capturing temporal relationships, while Grad-CAM 
precisely localizes crucial nodes in the network using 

gradient information. Consequently, the STGC-GCAM 
approach enables the acquisition of comprehensive spa-
tiotemporal feature representations and explanations of 
important nodes, facilitating a more thorough under-
standing of the decision-making process [43]. Notably, 
the integration of individual spatiotemporal features by 
ST-GCN ensures comprehensive consideration of indi-
vidual heterogeneity. In contrast, conventional classi-
fiers often process brain data by capturing functional 
connectivity values and converting them into vectors 
for analysis. This approach focuses on independent con-
nections, overlooking the intricate relationships pre-
sent within neighborhoods and the complex network 
structures of the brain. In summary, our STGC-GCAM 
model provides a unique and robust method for analyz-
ing fMRI data, leveraging the strengths of both ST-GCN 
and Grad-CAM, thus enabling a nuanced examination of 
inter-individual variability and individual characteristics 
within the framework.

Fig. 3 KM curves of (a) ALFF, (b) ReHo, and (c) the topological feature model. Forest plots (right of Fig. 3(d)) show HR and 95% CI for different 
predictors
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Fig. 4 Correlation analysis between topological features (NE) and clinical indicators (MMSE score) in the important brain regions

Fig. 5 The topological characteristics of disease-related brain regions have a mediating effect on cognitive function. Please refer to the Jagust LABS 
PDF on LONI for calculations of global AV45-PET SUVR and FDG-PET SUVR
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We trained the model on a multi-site dataset com-
prising 2272 participants, performing subgroup analy-
sis across different stages of AD. Furthermore, we 
visualized the distribution of disease-specific features 
in the network using t-SNE (Figure S5). The important 
brain regions contributing significantly to classification 
were primarily found in the DMN, SEN, and VN. Previ-
ous fMRI studies have consistently reported widespread 
changes in DMN connectivity in individuals with MCI 
and AD [52–54]. Comparing our results to the control 
group, AD patients exhibited abnormal brain regions, 
including the right cuneus, right superior frontal gyrus, 
bilateral middle occipital gyrus, right amygdala, left cal-
carine fissure and surrounding cortex, left inferior occipi-
tal gyrus, right olfactory cortex, and right paracentral 
lobule. These findings are in line with previous research 
[2, 55–58]. Similarly, in the MCI groups, we observed FC 
abnormalities in the right paracentral lobule, bilateral 
orbital part of the middle frontal gyrus, bilateral supe-
rior temporal gyrus, right superior parietal gyrus, right 
cuneus, and right posterior cingulate gyrus, consistent 
with existing literature on FC abnormalities [14, 59, 60]. 
Additionally, we identified the inferior occipital gyrus 
as a region implicated in both AD and MCI, despite 
not being traditionally considered as a significant brain 
region associated with AD. Notably, Yang et al. [61] dis-
covered abnormal connectivity in the inferior occipital 
gyrus among individuals with MCI and comorbid depres-
sion. This finding emphasizes the necessity for further 
research and individualized assessment of pathological 
features in specific populations.

To validate the pathophysiological significance of the 
identified brain regions, we performed correlation anal-
yses between their topological characteristics and clini-
cal features. Interestingly, after controlling for age, sex, 
education level, and APOE ε4 status, we observed that 
the topological features of these regions mediated the 
relationship between neurodegenerative biomarkers 
(AV45-PET and FDG-PET SUVR) and neurocognitive 
scale scores. For the diagnosis of AD, the most validated 
neuroimaging biomarkers include medial temporal lobe 
atrophy on MRI, posterior cingulate and temporoparietal 
hypometabolism on FDG-PET, and cortical Aβ deposi-
tion on amyloid-PET imaging [62]. AV45-PET is particu-
larly useful for ruling out AD, while FDG-PET aids in the 
differential diagnosis of neurodegenerative diseases, pre-
diction of short-term clinical outcomes, and staging of 
neurodegenerative processes. In early AD, a fMRI study 
demonstrated that the extent of FC abnormalities is asso-
ciated with the degree of Aβ pathology (measured by CSF 
and PET), but not tau pathology (measured by CSF) [63]. 
This suggests that Aβ pathology, rather than tau pathol-
ogy, primarily drives functional connectome changes in 

the early stages of AD. Our findings revealed a close rela-
tionship between FC, FDG-PET, AV45-PET, and cogni-
tive impairment in individuals with AD.

However, our study has some limitations. Despite the 
utilization of data from multiple imaging centers, limita-
tions in sample information exist, which restricts the gen-
eralizability of our findings. To overcome this limitation, 
future enhancements in data collection are required, par-
ticularly in Cohort III where follow-up data was incom-
plete. In addition, while we examined FC abnormalities, 
our analysis focused solely on affected brain regions 
rather than connectivity patterns. Future research should 
investigate changes in FC throughout the progression of 
AD to identify more accurate biomarkers for AD. Then, 
our study exclusively considered resting-state functional 
networks. To gain a comprehensive understanding of 
AD pathophysiology, future studies could incorporate 
other types of networks using different imaging modali-
ties, such as gray matter covariance networks, white mat-
ter connectivity networks, or combinations thereof. This 
would provide a more comprehensive perspective on 
AD identification. Future research should address these 
limitations by improving data collection, examining con-
nectivity patterns, and incorporating different types of 
networks and imaging modalities to enhance the identi-
fication of AD from the perspective of AD pathophysiol-
ogy. Moreover, we exclusively utilized fMRI data features 
as the model input in this study. Our future research plan 
is to integrate more clinical data into the STGC-GCAM 
model, such as age, sex, education, APOE4, CSF TAU/
PTAU, etc., which may improve the classification accu-
racy of the model.

Conclusion
This study introduces the STGC-GCAM framework, 
which enables the identification of a novel biomarker 
and facilitates early diagnosis of AD using a large multi-
site fMRI dataset. The results underscore the potential of 
deep learning methods in providing objective and stable 
biomarkers that can aid in the early detection of AD.
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