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Abstract 

Background Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotempo‑
ral dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This 
has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in muta‑
tion carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential 
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variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing 
published literature on biofluid PGRN concentrations.

Methods Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were col‑
lected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concen‑
trations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation 
type, age at onset, sex, and diagnosis were investigated in this subset of the data.

Results We established a plasma PGRN concentration cut‑off between pathogenic mutation carriers and non‑carri‑
ers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut‑off of 3.43 ng/
mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN 
mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers 
(p = 0.007) with a trend in non‑carriers (p = 0.062), and there was a significant but weak positive correlation with age 
in both GRN mutation carriers and non‑carriers. No significant association was seen with weight or with TMEM106B 
rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype 
in both GRN mutation carriers and non‑carriers.

Conclusions These results further support the usefulness of PGRN concentration for the identification of the large 
majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of consid‑
ering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be 
particularly important as we enter the era of trials for progranulin‑associated FTD.

Keywords Frontotemporal dementia, Progranulin

Introduction
Heterozygous mutations in the progranulin gene (GRN) 
are a key cause of frontotemporal dementia (FTD) [2, 7]. 
These pathogenic GRN variants cause haploinsufficiency, 
resulting in a significantly decreased concentration of 
the progranulin protein (PGRN), a reduction which can 
be measured in biofluids [13, 15]. The discovery of this 
core pathophysiological process has led to the develop-
ment of clinical trials that aim to increase the PGRN 
concentration in these mutation carriers by targeting key 
mechanisms involved in the biology of PGRN. However, 
to establish the efficacy of treatment, robust and effective 
measures of PGRN biofluid concentration are required. 
In turn, in order to correctly interpret results, a more 
comprehensive understanding of how PGRN concentra-
tions change with disease and what factors influence such 
concentrations is required.

Despite multiple studies now being published on 
PGRN concentration, a number of questions remain. 
Firstly, what level signifies the presence of a patho-
genic mutation? Although significantly reduced PGRN 
levels in mutation carriers occur compared with non-
carriers, previous studies have shown some overlap 
between these groups, with debate on the best cut-off 
value to define pathogenicity: proposed plasma cut-offs 
have ranged from 61.5  ng/mL to 112.0  ng/mL [9, 14]. 
Secondly, what factors affect this variability in PGRN 
concentration? Little is known about the effect of pre-
analytical or processing factors but existing literature 

indicates that different types of GRN mutation may 
cause lower or higher PGRN concentrations [22, 24, 
28]. Moreover, previous studies have highlighted the 
influence of certain genetic polymorphisms, includ-
ing TMEM106B rs1990622 and GRN rs5848, on PGRN 
concentration [10, 16, 25]. Finally, several studies have 
highlighted the influence of different clinical pheno-
types and biological sex on PGRN concentration [1, 10, 
30].

In this study, we aimed to explore these questions 
using a retrospective analysis of published data on bio-
fluid PGRN concentration.

Methods and demographics
Data acquisition
We initially undertook a PubMed search for all publica-
tions reporting human biofluid PGRN concentrations in 
either disease or healthy controls (Supplementary Fig. 1). 
154 publications were identified (up to a cut-off search 
date of January 2020): data was available online for 12 of 
these and for the further 142 publications, correspond-
ing authors were contacted directly to enquire about the 
availability of data. As well as the specific PGRN concen-
tration, the following data were requested: the assay that 
was used, whether a GRN mutation was present (and if 
so, which one), symptomatic vs presymptomatic status 
(if GRN mutation present), clinical diagnosis (e.g. behav-
ioural variant frontotemporal dementia, Alzheimer’s 
disease etc. according to consensus diagnostic criteria), 
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gender, age at sample, age at onset of disease, weight, and 
the genotype of two polymorphisms previously shown 
to potentially affect PGRN concentration: TMEM106B 
rs1990622 and GRN rs5848. Authors who did not initially 
respond were contacted one further time. Data that was 
collected, including the institute, country, assay type and 
sample type, alongside the number of data points pro-
vided, are listed in Supplementary Table 1.

Statistics
All statistical analysis was performed using GraphPad 
Prism (version 9.2.0), and data were tested for normal-
ity using the Shapiro Wilk test. Depending on normality, 
group differences were analysed using either a two tailed 
t-test or Mann Whitney test with p < 0.05 considered 
significant. Similarly, Pearson or Spearman correlations 
were calculated depending on normality. A ROC curve 
analysis was used for analysing clinical cut-off values with 
the maximum Youden’s index used to establish the best 
cut-off value.

Results
In total, data were shared from 75 publications, con-
sisting of PGRN concentrations from 7071 individuals 
(Table  1, Supplementary Fig.  1). Of these, 56 used the 
Adipogen assay (Adipogen Inc., Seoul, Korea) and 19 
used other assays (5 used A&G pharmaceutical (Colum-
bia, MD), 1 used BioVendor (Brno, Czech Republic), 2 
used Mediagnost (Reutlingen, Germany) and 11 used 
R&D systems (Minneapolis MN, USA)). We therefore 
decided to focus on the Adipogen assay data as there 
were limited data on each of the other individual assays. 
Of the 56 studies, 38 investigated plasma, 12 serum, and 
12 CSF concentrations of PGRN (with some papers stud-
ying more than one sample type).

PGRN concentrations in people with GRN variants
We initially examined concentrations in people with 
variants in the GRN gene. We considered different vari-
ants including those with nonsense, frameshift, or dele-
tion mutations as well as splice site mutations. Missense 
variants were divided into mutations in the signal peptide 
and variants after the signal peptide (termed ‘other mis-
sense mutations’).

Plasma
Data were available on plasma PGRN concentration 
using the Adipogen assay in 3301 individuals (Table  1). 
Concentrations were variable both between and within 
individual GRN variants (Fig.  1A). Grouping these vari-
ants by type of mutation (Fig.  1B), the other missense 
mutations had significantly higher plasma PGRN concen-
trations compared with all other mutation groups (ver-
sus missense in the signal peptide (p = 0.002), splice site 
(p < 0.0001), deletions (p = 0.042), frameshift (p < 0.0001) 
and nonsense mutations (p < 0.0001)). Significantly 
higher levels were also observed in the splice site group 
compared with both frameshift and nonsense mutations 
(p < 0.0001 and p = 0.001, respectively).

Focussing on missense mutations (Fig. 3), plasma PGRN 
levels were generally in the normal range for all mutations 
in the “other missense” group (i.e. those after the signal 
peptide). However, two mutations, C105Y and A199V, 
were exceptions to this, yielding low plasma PGRN lev-
els (below both previously defined cut-offs of 61.5 ng/mL 
[14] and 71.0 ng/mL [30] in all measured cases. Interest-
ingly, in some of the other missense mutations levels were 
variable, with concentrations both below and above the 
previously defined cut-offs (e.g. C139R, A266P).

Using this large dataset of plasma PGRN concentra-
tions, a cut-off for GRN mutation pathogenicity was 

Table 1 PGRN concentration data shared by assay and biofluid type. Total numbers are shown with available data on GRN mutation 
carriers shown in parentheses

A&G Adipogen BioVendor Mediagnost R&D Others Total

Total 149 (7) 5058 (564) 56 (38) 55 (0) 1481 (6) 272 (1) 7071 (616)

Plasma 0 (0) 3301 (438) 0 (0) 0 (0) 671 (0) 147 (1) 3986 (439)

Serum 149 (7) 758 (125) 53 (35) 49 (0) 649 (6) 0 (0) 1658 (173)

CSF 0 (0) 1346 (19) 32 (23) 55 (0) 0 (0) 125 (0) 1558 (42)

Fig. 1 A Plasma PGRN concentrations across individual GRN variants. Light grey shading denotes exonic regions and darker grey shading intronic 
regions. Dotted lines denote previously published with cut‑offs for pathogenicity 61.55 [14] and 71.00 [30] and average non‑GRN plasma PGRN 
concentration (156.02 ng/mL). Different colours represent different types of variants. B Plasma PGRN concentrations by mutation type. * P < 0.05, ** 
P < 0.01, *** P < 0.001, **** P < 0.0001, two‑tailed Mann–Whitney Test. Small sample sizes in deletions (n = 4) and missense in signal peptide (n = 10). 
C Plasma PGRN concentrations in different GRN missense variants. Dotted lines denote cut‑offs previously published of 61.55 [14] and 71.00 [30]. 
Error bars indicate standard error of the mean (SEM)

(See figure on next page.)



Page 4 of 13Swift et al. Alzheimer’s Research & Therapy           (2024) 16:66 

Fig. 1 (See legend on previous page.)
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established as 74.8 ng/mL with a Youden’s index of 0.92 
(sensitivity 97.3; specificity 94.8), based on 3265 individu-
als (401 GRN mutation carriers (excluding other mis-
sense mutations) and 2864 non-carriers (both healthy 
and disease controls)) (Fig. 2A).

Serum
Less data were available for serum concentrations using 
the Adipogen assay, with measures available for 758 
individuals. A cut-off for GRN mutation pathogenicity 
was established as 86.3 ng/mL with a Youden’s index of 
0.82, based on 125 GRN mutation carriers and 633 non-
carriers (Fig. 2C). Serum levels across all cases (mutation 
carriers and non-carriers) showed a trend for correlation 
with plasma levels, r = 0.67, p = 0.0696 (Supplementary 
Fig. 3).

CSF (Fig. 2B)
CSF PGRN concentrations using the Adipogen assay 
were available in 1346 individuals. A cut-off for GRN 
mutation pathogenicity was established as 3.43  ng/mL 
with a Youden’s index of 0.65, based on 19 GRN muta-
tion carriers and 1327 non-carriers (Fig. 2B). CSF levels 
correlated with plasma levels, r = 0.33, p < 0.001 but only 
showed a trend to correlation with serum concentrations, 
r = 0.15, p = 0.0780 (Supplementary Fig. 3).

PGRN concentrations by clinical phenotype
Neurodegenerative disorders
In the GRN mutation carrier group, no differences were 
observed in plasma PGRN concentrations between 
patients with a diagnosis of behavioural variant FTD 
(bvFTD) and those with a primary progressive aphasia 
(PPA) (Supplementary Fig. 4).

In those without GRN mutations, plasma PGRN con-
centrations were significantly higher than controls in 
multiple groups (Fig. 3A), including not only those with 
FTD syndromes, but also those with typical and atypical 
forms of Alzheimer’s disease (including posterior cortical 
atrophy).

PGRN concentrations were also available for a num-
ber of non-neurodegenerative conditions, with lower 
plasma PGRN levels seen in bipolar disorder compared 
with controls (p = 0.018), but not in diabetes (p = 0.543) 
(Supplementary Fig. 5A). Serum PGRN levels were found 
to be lower in Gaucher’s disease compared with controls 
(p < 0.001) but concentrations in both osteoarthritis and 
rheumatoid arthritis groups were higher (both p < 0.001) 
(Supplementary Fig. 5B).

PGRN concentration differences by sex
Plasma PGRN concentrations were significantly higher 
in women compared to men in GRN mutation carriers 
(mean (standard deviation) 46.6 (19.6) ng/mL vs (38.9 
(14.2) ng/mL, p = 0.007), as well as in non-carriers (175.7 
(60.7) ng/mL vs (165.7 (58.1) ng/mL p = 0.006, Fig.  3B). 
CSF PGRN levels were also significantly higher in women 
(2.5 (0.7) ng/mL) compared to men (1.6 (0.4) ng/mL) in 
the GRN mutation carrier group (p = 0.037), but not in 
the non-carrier group, where the opposite result was seen 
(men 4.7 (1.3) ng/mL, women 4.5 (1.2) ng/mL, p = 0.003) 
(Fig. 3C).

PGRN concentration with increasing age
Plasma PGRN concentrations showed a weak but signifi-
cant positive correlation with age at sampling (r = 0.09, 
p < 0.0001) in non-carriers with a similar correlation seen 
in GRN mutation carriers (r = 0.15, p = 0.0031) (Supple-
mentary Fig. 6).

There was no significant correlation of plasma PGRN 
concentration with age at symptom onset in GRN muta-
tion carriers. However, there was a significant positive 
correlation in an FTD cohort without mutations, r = 0.18, 
p < 0.0001. In contrast, there was a significant nega-
tive correlation in those with Alzheimer’s disease (AD), 
r = -0.24, p < 0.0001 i.e. lower concentrations associated 
with older age at onset (Supplementary Fig. 7).

PGRN concentration by weight
No significant correlations were seen between plasma 
PGRN levels and weight in either GRN mutation carri-
ers (r = -0.08, p = 0.7354) or in those without mutations 
(r = -0.07, p = 0.0751) (Supplementary Fig. 8).

PGRN concentration in relation to the GRN rs5848 
and TMEM106b rs1990622 polymorphisms
Significantly higher plasma PGRN levels were seen in 
those with the GRN rs5848 CC genotype compared to 
those with both the CT and TT genotypes in GRN muta-
tion carriers (p = 0.003 and p = 0.027 respectively; note 
that for heterozygous individuals these analyses did not 
take into account which rs5848-allele produced PGRN. 
Significantly higher concentrations were also seen in 
non-mutation carriers with the CC genotype compared 
with those with TT (p = 0.041) (Fig. 3D).

We found no significant differences between concen-
trations in those with the AA, AG or GG TMEM106B 
rs1990622 genotypes, either in GRN mutation carriers or 
non-carriers (Fig. 3E).
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Fig. 2 A PGRN plasma concentrations in GRN mutation carriers (GRN) and non‑mutation carriers (Non‑GRN). Cut‑off determined using the optimal 
Youden’s index. B PGRN CSF concentrations in GRN mutation carriers (GRN) and non‑mutation carriers (non‑GRN). Cut‑off determined using 
the optimal Youden’s index. C Serum PGRN concentrations in both GRN mutation carriers (GRN) and non‑mutation carriers (non‑GRN). Cut‑off 
determined using the optimal Youden’s index. Error bars indicate standard error of the mean (SEM)
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Discussion
This study has highlighted a number of important fac-
tors that influence biofluid PGRN concentrations across 
a large cohort of individuals including type of GRN vari-
ant, clinical phenotype, age at sampling and at symptom 
onset, sex and the GRN rs5848 polymorphism.

Firstly, we highlighted the variability of plasma PGRN 
levels across GRN mutation types, most notably showing 
levels for missense mutations after the signal peptide to 
be significantly higher than the other mutation groups, 
suggesting that the majority of these mutations may 
not be pathogenic but more likely either risk factors for 
FTD or just benign polymorphisms. This is supported by 
earlier work indicating missense mutations yield PGRN 
levels higher than other GRN mutation carriers [9]. How-
ever, this was not true for all mutations, as two mutations 
in this group, C105Y and A199V led to pathogenic lev-
els of plasma PGRN. Previous functional studies of these 
mutations have shown defects in RNA splicing, PGRN 
secretion and proteolytic processing likely to cause a 
pathological effect (The A199V is in fact two nucleotides 
away from the splice site and thus is technically a splice-
site mutation)  [22, 20, 24]. This supports the suggestion 
that these two missense mutations are pathogenic. Fur-
thermore, as suspected, the missense mutations in the 
signal peptide generally yielded low, likely pathogenic, 
levels of plasma PGRN which is corroborated by existing 
reports of disrupted protein interactions and low PGRN 
levels in these mutations [28, 29]. These findings provide 
a key insight into the potential pathogenicity of certain 
GRN mutations and may help identify suspected patho-
genic mutations in the future. However, what these stud-
ies do not tell us about is whether missense mutations 
cause abnormal functioning progranulin in the presence 
of normal PGRN concentrations in biofluids, and further 
work is required to understand the complex downstream 
pathways that might lead to neurodegeneration in these 
cases.

Secondly, we established a novel cut-off value for 
GRN mutation pathogenicity at a plasma PGRN level of 
74.8 ng/mL based on data from 3265 individuals (exclud-
ing individuals with ‘other missense mutations’). This 
newly calculated cut-off is very close to one initially 
reported in the literature (74.4 ng/ml) [13]. Other previ-
ously established cut-offs were generally lower than this 
value, at 61.5 ng/mL and 71.0 ng/mL [14, 30] although an 
early study reported a much higher cut-off of 112.0  ng/
mL [9]. This variation could be due to the inclusion cri-
teria, with different populations, smaller sample sizes in 
some studies, and in some cases a different set of muta-
tion types. There may also have been pre-analytical or 
analytical differences between centres which we are una-
ware of. Lastly, the control group of ‘non-carriers’ may 
have varied between studies. The cut-off generated here 
is based on the largest sample size reported to our knowl-
edge, incorporating different mutation types and a spread 
of populations. However, as seen with previous studies, 
overlap in plasma PGRN levels between mutation car-
riers and non-carriers is still observed (i.e. there is no 
absolute cut-off), likely reflecting the influence of other 
biological factors on these levels such as hormonal or 
metabolic disorders.

We also identified cut-offs for CSF and serum PGRN 
levels in this cohort, which could prove beneficial for 
a more complete picture of how PGRN levels are ana-
lysed. Notably however, the lack of tight correlations 
between different fluid PGRN measures found here 
could suggest differential PGRN expression throughout 
the body. This is supported by prior findings of signifi-
cantly lower CSF PGRN levels compared with serum 
levels in some GRN mutation carriers and other reports 
proposing differentially derived PGRN in CSF and 
blood [8, 26, 34].

Although GRN mutation carriers are associated with 
lower PGRN concentrations, we found that across mul-
tiple neurodegenerative diseases PGRN levels were 

Fig. 3 A Plasma PGRN concentrations across different clinical diagnoses. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001, two‑tailed Mann–
Whitney Test. Significant differences compared with controls are shown on the graph. Additionally, PGRN concentrations were significantly different 
for bvFTD v CBS (**), FTD‑ALS (*), MCI (***) and PCA (**); lvPPA v PPA‑NOS (**), FTD‑ALS (***), MCI (****) and PCA (*); nfvPPA v CBS (*), FTD‑ALS (***), 
MCI (**) and PCA (**); svPPA v PPA‑NOS(**), CBS (*), FTD‑ALS(**), MCI (****) and PCA (**); PPA‑NOS v FTD‑ALS (***), AD (*), LBD (*) and PCA (****); CBS 
v AD (**), LBD (*) and MCI (****); PSP v PCA (**); FTD‑ALS v CBS (***), AD (**), LBD (**) and PCA (***); ALS v PCA (**); AD v MCI (****) and PCA (***); 
MCI v LBD (**) and PCA (****); LBD v PCA (**). (bvFTD: behavioural variant FTD, PPA: primary progressive aphasia, nfvPPA: nonfluent variant PPA, 
svPPA: semantic variant PPA, lvPPA: logopenic variant PPA, FTD‑ALS: frontotemporal dementia—amyotrophic lateral sclerosis, ALS: amyotrophic 
lateral sclerosis, CBS: corticobasal syndrome, PSP: progressive supranuclear palsy, AD: Alzheimer’s disease, MCI: mild cognitive impairment, LBD: 
lewy body disease, PCA: posterior cortical atrophy). Small sample sizes in ALS (n = 1), PCA (n = 10), PPA‑NOS (n = 11), FTD‑ALS (n = 18), PSP (n = 16). 
B Plasma and C CSF PGRN concentrations in females and males in both GRN mutation carriers (GRN) and non‑mutation carriers (non‑GRN). * 
P < 0.05, ** P < 0.01, two‑tailed Mann–Whitney Test. D Plasma PGRN concentrations in those with different GRN rs5848 and E TMEM106b rs1990622 
polymorphisms in both GRN mutation carriers (GRN) and non‑mutation carriers (non‑GRN). * P < 0.05, ** P < 0.01, two‑tailed Mann–Whitney Test. 
Error bars indicate standard error of the mean (SEM)

(See figure on next page.)
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generally higher than a control population e.g. in AD 
and non-GRN-FTD, as reported in a previous multi-
centre Italian study [14]. Numerous reviews have high-
lighted PGRN’s key role in neurodegeneration [5, 19, 
27], although other studies have not reported differ-
ences in plasma PGRN levels in AD despite a reported 

increase in PGRN mRNA [6, 15]. Similarly, previous 
research has suggested that people with FTD without 
GRN mutations have similar levels to controls [15, 30]. 
Further work is needed to better understand the role of 
increased PGRN in these disorders.

Fig. 3 (See legend on previous page.)



Page 9 of 13Swift et al. Alzheimer’s Research & Therapy           (2024) 16:66  

We also analysed whether PGRN differences were 
observed in non-neurodegenerative diseases, finding that 
certain conditions, such as bipolar disorder and Gau-
cher disease, were linked to lower PGRN concentrations 
whereas others, such as arthritis, had higher biofluid 
PGRN concentration. This mirrors findings reported 
previously for these conditions, emphasising the multi-
tude of processes PGRN is involved in and the need to 
consider comorbidities when interpreting levels [1, 3, 11, 
18, 21]. For example, PGRN concentrations may be more 
challenging to interpret in the differential diagnosis of 
people with FTD compared with bipolar disorder [12, 
21].

Sex differences have been previously reported in FTD 
[17] including PGRN levels across different biofluids. 
Nicholson and colleagues investigated the differential 
regulation between CSF and plasma PGRN, suggesting 
that this is linked to biological sex, with plasma PGRN 
levels higher in women and CSF PGRN levels higher 
in men [26]. This is consistent with our findings on sex 
differences in this cohort as well as other prior stud-
ies, with female plasma PGRN levels higher than males 
[30]. We also observed higher CSF PGRN levels in men 
in the non-carrier group, supporting the hypothesis of 
Nicholson et al. but notably found the opposite pattern in 
GRN mutation carriers, who yielded higher CSF PGRN 
levels in females. This potentially indicates a GRN muta-
tion specific sex difference in PGRN activity in the cen-
tral nervous system. Certainly, sex differences appear 
to be important in normal PGRN function, with only 
female GRN mutation mice developing bone formation 
defects compared with wildtype, and GRN expression 
linked to oestrogen activity during brain development 
[32, 33]. Collectively, these findings reveal the complex-
ity of PGRN activity both peripherally and centrally and 
highlight the effect of biological sex on the function of 
this protein, something which should be considered for 
upcoming therapeutic trials.

A previous multicentre Italian study reported that the 
lowest plasma PGRN levels in GRN mutation carriers 
were associated with an anticipation of disease onset of 
about 9 years [14], although a further study did not find 
any correlation with either age at onset or age at sample 
[25]. In the present study, we found a significant positive 
correlation between age at symptom onset and plasma 
PGRN level in people with FTD without GRN muta-
tions, where an earlier onset is seen in those with lower 
PGRN levels. However, we also saw a significant posi-
tive correlation between age at sampling and PGRN level 
in these non-carriers, which could be influencing our 
results, indicating a general increase in PGRN level with 
age. The reason for this increase is unclear although may 
be due to inflammatory changes with increasing age. In 

contrast, when analysing correlations in people with AD, 
we saw a significant negative correlation between plasma 
PGRN level and age at onset, indicating that higher levels 
of PGRN are linked to earlier ages of onset. Interestingly, 
Suarez-Calvet and colleagues report an increase in CSF 
PGRN level as the disease course progresses support-
ing the idea that PGRN plays a role in the pathogenicity 
of this condition [31], although the exact relationship 
between AD and PGRN requires further study.

We additionally found that the GRN rs5848 polymor-
phism influences plasma PGRN levels in both GRN 
mutation carriers and non-carriers, with the lowest lev-
els in those with the TT genotype. This finding was pre-
viously reported by Hsiung  and colleagues [16], who 
reported reduced serum PGRN levels for this genotype 
and speculated that this was related to miR-659 depend-
ent translational inhibition. This was also highlighted 
in work by Nicholson and colleagues [26] who dem-
onstrated a significant association between rs5848 and 
CSF PGRN concentration. Additionally, it has been pre-
viously reported that rs5848 significantly affects GRN 
mRNA levels both centrally and peripherally and has 
been linked to both AD and Parkinson’s disease [4, 23]. 
Together, these findings suggest rs5848 is a key influencer 
of PGRN levels and could also help understand the role 
of PGRN in other neurodegenerative diseases. Interest-
ingly, the TMEM106b rs1990622 polymorphism was not 
associated with differences in plasma PGRN levels in this 
large cohort. This finding suggests that the influence of 
this well-known risk factor for GRN-associated FTD is 
unlikely to be modulated through PGRN levels, as specu-
lated previously [10]. However, more research is required 
to understand this fully.

Lastly, it is important to note the limitations of this 
study. One reason for variation in PGRN levels between 
studies included here is that despite testing the same fluid 
type with the same assay, the tests are performed by dif-
ferent researchers in different laboratories with different 
assay batches. Secondly, although the numbers of cases 
with available concentrations to study was large, once 
stratified, numbers for individual comparisons were often 
much smaller. Thirdly, for many of the conditions studied 
(including AD), we did not have access to robust disease 
severity measures. Finally, it should also be noted that in 
the absence of a certified reference material and a value 
assigned for PGRN concentration by a certified reference 
method, different assays are not standardized to each 
other; hence, laboratory- and assay-specific validation of 
the cut-points reported here remains important.

In summary, this large and diverse cohort of PGRN lev-
els has allowed us to firstly refine the plasma PGRN cut-
off level to predict GRN mutations, secondly, confirm the 
differential impact of the mutation type on blood PGRN 
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levels, thirdly, highlight the high variability across mis-
sense mutations in GRN, and lastly, highlight the numer-
ous factors which influence PGRN biofluid levels both 
GRN mutation carriers and non-carriers (i.e. clinical 
diagnosis, sex, age, GRN rs5848 genotype). These factors 
should be considered when utilising this marker, gener-
ating a more personalised approach to treatment. These 
results also reflect the need for the identification of addi-
tional factors which affect PGRN biofluids levels and thus 
hopefully modulate disease onset and/or progression, 
providing a more comprehensive picture of this disease 
as we continue into the era of therapeutic trials.
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