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Abstract 

Background The relationship between periodontitis and Alzheimer’s disease (AD) has attracted more attention 
recently, whereas profiles of subgingival microbiomes and gingival crevicular fluid (GCF) metabolic signatures in AD 
patients have rarely been characterized; thus, little evidence exists to support the oral-brain axis hypothesis. Therefore, 
our study aimed to characterize both the microbial community of subgingival plaque and the metabolomic profiles 
of GCF in patients with AD and amnestic mild cognitive impairment (aMCI) for the first time.

Methods This was a cross-sectional study. Clinical examinations were performed on all participants. The microbial 
community of subgingival plaque and the metabolomic profiles of GCF were characterized using the 16S ribosomal 
RNA (rRNA) gene high-throughput sequencing and liquid chromatography linked to tandem mass spectrometry (LC–
MS/MS) analysis, respectively.

Results Thirty-two patients with AD, 32 patients with aMCI, and 32 cognitively normal people were enrolled. The 
severity of periodontitis was significantly increased in AD patients compared with aMCI patients and cognitively nor-
mal people. The 16S rRNA gene sequencing results showed that the relative abundances of 16 species in subgingival 
plaque were significantly correlated with cognitive function, and LC–MS/MS analysis identified a total of 165 differ-
entially abundant metabolites in GCF. Moreover, multiomics Data Integration Analysis for Biomarker discovery using 
Latent cOmponents (DIABLO) analysis revealed that 19 differentially abundant metabolites were significantly corre-
lated with Veillonella parvula, Dialister pneumosintes, Leptotrichia buccalis, Pseudoleptotrichia goodfellowii, and Actino-
myces massiliensis, in which galactinol, sn-glycerol 3-phosphoethanolamine, D-mannitol, 1 h-indole-1-pentanoic acid, 
3-(1-naphthalenylcarbonyl)- and L-iditol yielded satisfactory accuracy for the predictive diagnosis of AD progression.

Conclusions This is the first combined subgingival microbiome and GCF metabolome study in patients 
with AD and aMCI, which revealed that periodontal microbial dysbiosis and metabolic disorders may be involved 
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in the etiology and progression of AD, and the differential abundance of the microbiota and metabolites may be use-
ful as potential markers for AD in the future.

Keywords Microbiome, Metabolome, Multiomics, Alzheimer’s disease, Mild cognitive impairment, Periodontitis

Introduction
Alzheimer’s disease (AD), a degenerative disease of the 
central nervous system, is characterized pathologically 
by extracellular β-amyloid containing plaques and intra-
cellular tau-containing neurofibrillary tangles and is the 
most common cause of dementia [1, 2]. Thus far, the 
exact molecular mechanism of AD pathogenesis is not 
fully understood and several hypotheses have been pro-
posed to explain the AD pathological mechanisms [3], of 
which the infection hypothesis has gained traction and 
recognition due to new evidence regarding the associa-
tion of various pathogenic microbes and AD [4]. How-
ever, research on the infection hypothesis has mainly 
focused on the gut microbiota and the gut-brain axis [5, 
6], while few studies have focused on the oral microbi-
ota. Recently, a new concept referred to as the oral-brain 
axis has emerged [7, 8]; nevertheless, the profiles of oral-
specific bacterial species/metabolites and their role in 
the pathogenesis and diagnosis of AD have not yet been 
established.

It is well known that the oral cavity is anatomically 
closer to the cerebrum than the gut, and the oral micro-
biota is the second largest microbiota in the human body 
[9]. Importantly, as one of the most common chronic 
inflammatory and infectious oral diseases [10], peri-
odontitis plays a potential role in the development of AD 
through chronic subgingival microbial dysbiosis [11–13]. 
Our and others’ previous studies have indicated that the 
periodontal microbiota may affect the pathological pro-
cess of AD by activating microglia to induce inflamma-
tion or the release of metabolites [11, 14, 15], but the 
attached and unattached subgingival microbiota in AD 
patients has not been fully investigated. In addition, as 
a chronic degenerative disease, the pathological changes 
of AD may occur in the clinical stage of amnestic mild 
cognitive impairment (aMCI) before the dementia symp-
toms [16]. However, changes in the subgingival micro-
biota of patients with aMCI have not been characterized.

Moreover, bacterial biochemical alterations due to 
microbial dysbiosis are known to regulate host metabolic 
pathways. Metabolites are also important functional out-
puts that affect AD progression after host-microbe inter-
actions in the infection hypothesis [17]. In periodontal 
tissue, as a type of tissue fluid that flows into gingival 
crevices, gingival crevicular fluid (GCF) contains many 
metabolites derived from the host and subgingival micro-
biota in gingival crevices. Therefore, the metabolites 

in GCF can reflect the interactions between the host-
subgingival microbiota and biochemical metabolism as 
intermediates [18]. Furthermore, GCF is a noninvasive 
peripheral body fluid that is anatomically closer to cere-
brospinal fluid. Therefore, diagnostic and prognostic bio-
marker analyses using GCF have the potential to detect 
pathological changes in patients with AD. Guo et al. [11] 
compared the subgingival microbial communities of GCF 
in AD patients and cognitively normal people, but the 
metabolic profiles of GCF associated with AD progres-
sion have not been reported.

Therefore, this study aimed to characterize both the 
microbial community of subgingival plaque and the 
metabolomic profiles of GCF in patients with AD and 
aMCI for the first time, further exploring the oral-brain 
axis and novel host-microbe interactions linking peri-
odontitis to AD etiology and progression.

Methods
Study population
This was a cross-sectional study. Participants with AD or 
aMCI were recruited from the Department of Neurology, 
Ruijin Hospital, and the Department of Geriatric Psychia-
try, Shanghai Mental Health Center from November 2019 
to November 2021. Moreover, cognitively normal people 
(CN group) were enrolled from the Department of Neu-
rology, Ruijin Hospital, and the Department of Periodon-
tology, Shanghai Ninth People’s Hospital from November 
2019 to December 2021. All volunteers provided their 
informed, written consent before study participation. 
This study was approved by the Research Ethics Commit-
tee of Shanghai Ninth People’s Hospital, and related hos-
pitals (Ethical consent No. SH9H-2019-T218-1).

Inclusion and exclusion criteria
Subjects with the following conditions were included in this 
study:

(a) Patients with AD dementia who were diagnosed 
following the National Institute on Aging and Alz-
heimer’s Association guidelines for probable AD 
dementia with the support of magnetic resonance 
imaging and all patients with aMCI who met the 
previously published National Institute on Aging 
and Alzheimer’s Association criteria (2011) for 
“MCI due to AD,” with memory deficits as the only 
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complaint of cognitive impairment, reported by the 
patient, caregiver, or physician [19];

(b) Cognitively normal people with a Montreal Cognitive 
Assessment (MoCA) score of ≥ 26 and a Mini-Mental 
State Examination (MMSE) score of ≥ 27 [20];

(c) Those with a functional tooth number of ≥ 6;
(d) Participants who were able to cooperate during 

periodontal examination;
(e) Patients or their legal guardians signed the 

informed consent forms.

Subjects who met any of the following criteria were excluded 
from this study

(a) Diagnosed with other types of dementia;
(b) Hamilton Depression Scale score of > 6 [21];
(c) Functional tooth number of < 6;
(d) Received periodontal treatments for 6  months 

before sampling;
(e) Had open surgical treatments of the head and/or 

mouth;
(f ) Diagnosed with acquired immune deficiency syn-

drome, hepatitis B infection, or other infectious dis-
eases;

(g) Diagnosed with diabetes mellitus;
(h) Those with a history of cancer, staphylococcal toxic 

shock syndrome, inherited metabolic diseases, 
autoimmune diseases, hormone-dependent dis-
eases, radiotherapy, and chemotherapy;

(i) Those administered antibiotics, immunomodulators, 
cytokines, and probiotics within the last 3 months.

Clinical examination
Neurological examination
All participants underwent a set of standardized neuro-
logical examinations by two or three neurologists who 
specialized in dementia and were eligible to the above-
reported diagnostic criteria [19, 22]. Data were also 
gathered on age, sex, educational level, and family and 
personal histories related to cognitive impairment. After 
the neurological examination, patients were classified 
as having aMCI or AD. For diagnostic and prognostic 
evaluation, some participants also underwent 8F-flor-
betapir (AV45) positron emission tomography (PET) and 
apolipoprotein E (APOE) gene testing after obtaining 
informed consent.

Periodontal examination
A full-mouth comprehensive examination of the peri-
odontal condition was performed for all individuals by 
two periodontists from the Department of Periodontol-
ogy, Shanghai Ninth People’s Hospital, including the 

number of teeth, periodontal probing depth (PPD), clini-
cal attachment level (CAL), percentage of CAL > 3  mm, 
gingival index (GI), plaque index (PLI), and percentage 
of bleeding on probing (BOP). Specifically, the number of 
teeth, CAL, and GI index reflected the severity of peri-
odontitis, PPD reflected the complexity of periodontitis, 
while CAL > 3  mm% and BOP% can reflect the extent 
and distribution of periodontal inflammation, and PLI 
reflects the oral hygiene status of the subjects [13]. Data 
consistency of periodontal examination was assessed by 
the Kappa coefficient and inter-class correlation coeffi-
cients [23].

Sample collection
After clinical examination, subgingival plaque and GCF 
samples were obtained from Ramfjord index teeth [24, 
25] (the maxillary right and mandibular left first molars, 
maxillary left and mandibular right first premolars, and 
maxillary left and mandibular right central incisors) 
and teeth with moderate and deep periodontal pockets 
(PPD > 3 mm). Before sample collection, teeth were iso-
lated using sterile cotton rolls and air-dried. The supra-
gingival plaque was removed, and the subgingival plaque 
(including the attached and unattached subgingival 
microbiota) was scraped with Gracey curettes and placed 
in a sterile Eppendorf tube containing 0.5 ml of 1 × phos-
phatic buffer solution (pH 7.2) and stored at − 80  °C. 
Three or four sterile dental absorbent paper points on 
each site per tooth were gently inserted into the gingi-
val sulcus or periodontal pockets for approximately 30 s 
to obtain GCF, which was then weighed using a Met-
tler analytical balance to a sensitivity of 0.1 mg (Mettler 
Toledo, Shanghai, China), placed in sterile Eppendorf 
tubes on ice, transported to the laboratory and stored 
at − 80  °C. A total of 20–40 strips were collected from 
each participant. Both subgingival plaque and GCF sam-
ples were collected prior to clinical measurements, and 
samples visibly contaminated with blood were discarded.

Microbial DNA extraction and 16S ribosomal RNA (rRNA) 
sequencing
DNA extraction and 16S rRNA gene amplicon sequencing
Total genomic DNA was extracted from subgingival 
plaque samples using the OMEGA DNA Kit (M5635-
02) (Omega Bio-Tek, Norcross, GA, USA) following 
the manufacturer’s instructions and stored at − 20  °C 
prior to further analysis. The quantity and quality of 
the extracted DNA were measured using a NanoDrop 
NC2000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA) and agarose gel electrophoresis, 
respectively. Polymerase chain reaction (PCR) amplifica-
tion of the nearly full-length bacterial 16S rRNA genes 
was performed using the forward primer 27F (5′-AGA 



Page 4 of 17Qiu et al. Alzheimer’s Research & Therapy           (2024) 16:41 

GTT TGA TCC TGG CTC AG-3′) and the reverse primer 
1492R (5′-ACC TTG TTA CGA CTT-3′). The extracted 
DNA was amplified with two-step PCR, with sample-
specific 16-bp barcodes incorporated into the forward 
and reverse primers for multiplex sequencing in the sec-
ond PCR step. Thermal cycling consisted of initial dena-
turation at 98 °C for 2 min, followed by 25/10 cycles (for 
the first and second amplification steps, respectively) 
consisting of denaturation at 98  °C for 30  s, annealing 
at 55  °C for 30  s, and extension at 72  °C for 90  s, with 
a final extension of 5  min at 72  °C. All PCR amplicons 
were purified with Agencourt AMPure Beads (Beck-
man Coulter, Indianapolis, IN) and quantified using the 
PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, 
USA). After the individual quantification step, amplicons 
were pooled in equal amounts, and single-molecule real 
time sequencing technology was performed using the 
PacBio Sequel platform at Shanghai Personal Biotech-
nology Co., Ltd (Shanghai, China).

Bioinformatics and data analysis
Microbiome bioinformatics was mainly performed using 
the QIIME2 and R packages (v3.2.0). α-Diversity indices, 
such as the Chao1 richness estimator, observed species, 
Shannon diversity index, Simpson index, Faith’s PD, Pie-
lou’s evenness and Goods coverage, were calculated using 
the amplicon sequence variant (ASV) table in QIIME2 
and visualized as box plots. ASV-level ranked abundance 
curves were generated to compare the richness and 
evenness of ASVs among samples. β-Diversity analysis 
was performed to investigate the structural variation in 
microbial communities across samples using Bray–Curtis 
metrics and visualized via principal coordinate analysis 
(PCoA). The significance of the differentiation of micro-
biota structure among groups was assessed by permu-
tational multivariate analysis of variance and analysis of 
similarities using QIIME2. The differential species com-
positions and abundances were visualized using heat-
maps, and linear discriminant analysis effect size (LEfSe) 
was performed to detect differentially abundant taxa 
across groups using the default parameters. The func-
tional microbes that primarily drive the difference in the 
severity of cognitive impairment (based on the groups, 
MoCA and MMSE scores) among the CN, aMCI, and AD 
groups were determined using microbiome multivariable 
associations with linear models (MaAsLin2).

Data access
All microbial raw sequences were deposited in the 
NCBI Sequence Read Archive under accession number 
PRJNA903172.

GCF sample preparation and metabolic analysis
GCF sample preparation and liquid chromatography linked 
to tandem mass spectrometry (LC–MS/MS) data acquisition
To extract metabolites from GCF samples, 40  μl of cold 
extraction solvent methanol/acetonitrile/H2O (2:2:1, v/v/v) 
was added to each 10-mg sample (each sample had eight to 
ten dental absorbent paper points, and the weight of GCF 
was calculated) and adequately vortexed. After vortexing, 
the samples were incubated on ice for 20 min and then cen-
trifuged at 14,000 × g for 20  min at 4  °C. The supernatant 
was collected and dried in a vacuum centrifuge at 4 °C. For 
LC–MS/MS analysis, the samples were redissolved in 100 μl 
acetonitrile/water (1:1, v/v) solvent and transferred to LC 
vials. Extracts were analyzed using a quadrupole time-of-
flight mass spectrometer (Sciex TripleTOF 6600) coupled 
to hydrophilic interaction chromatography via electrospray 
ionization for untargeted metabolomics of polar metabolites 
at Shanghai Applied Protein Technology Co., Ltd. (Shang-
hai, China). The mass spectrometer was operated in both 
negative ion and positive ionization modes. The product ion 
scan was acquired using information-dependent acquisition 
with the high sensitivity mode selected.

Bioinformatics and data analysis
The metabolites were identified by accuracy mass 
(< 25 ppm) and secondary mass spectrometry data, which 
were matched with the standard database (Shanghai 
Applied Protein Technology Co., Ltd.). In the extracted 
ion features, only the variables having more than 50% of 
the nonzero measurement values in at least one group 
were kept. Compound identification of metabolites by 
MS/MS spectra was performed with an in-house data-
base established with available authentic standards. After 
normalization to total peak intensity, the processed data 
were uploaded before importing into SIMCA-P (version 
14.1, Umetrics, Umea, Sweden), where they were sub-
jected to multivariate data analysis, including pareto-
scaled principal component analysis (PCA) and partial 
least-squares discriminant analysis (PLS-DA). Signifi-
cance was determined using MaAsLin2, and a heatmap 
was presented as a visual aid for the clustering of differ-
entially abundant metabolites and pathways. The Euclid-
ean distance algorithm for similarity measurement and 
the average linkage clustering algorithm (clustering uses 
the centroids of the observations) for clustering were 
selected when performing hierarchical clustering. A 
heatmap is presented as a visual aid for clustering dif-
ferentially abundant metabolites and pathways. For the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway annotation, the metabolites were blasted against 
the online KEGG database (KEGG; http:// www. genome. 
jp/ kegg/). The corresponding KEGG pathways were then 

http://www.genome.jp/kegg/
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extracted. To further explore the impact of differentially 
expressed metabolites, enrichment analysis was per-
formed. KEGG pathway enrichment analyses were per-
formed using the differentially abundant metabolites of 
each pathway as the background dataset.

Correlations of the microbiome, metabolome, and clinical 
indices
Integrative analysis of the microbiome and metabolome
A multiomics integrative method named Data Integra-
tion Analysis for Biomarker discovery using Latent cOm-
ponents (DIABLO) was used to discriminate between the 
CN, aMCI, and AD groups [26] and to further identify 
the optimal biomarkers from functional microbes and 
differentially abundant metabolites. DIABLO is imple-
mented in the mix-Omics R Bioconductor package with 
functions for parameter choice and visualization to assist 
in the interpretation of integrative analyses.

Association between candidate biomarkers and clinical 
indices
A heatmap of Spearman’s rank correlation coefficient 
was used to illustrate the relationships between candi-
date biomarkers from the DIABLO analysis and clinical 
indices.

Diagnostic capability of potential biomarkers
Values for the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve were used to assess 
the ability of candidate biomarkers to diagnosis and indi-
cate clinical progression of AD.

Statistical analysis
Continuous variables were expressed as the mean ± stand-
ard deviation (SD). Analysis of demographics and clini-
cal characteristics among the CN, aMCI, and AD groups 
was conducted via analysis of variance (ANOVA) test or 
Kruskal–Wallis test for continuous variables, and chi-
square tests for categorical variables using SPSS version 
26.0 (SPSS, Inc., Chicago, IL, USA) and GraphPad Prism 
6 (GraphPad Software, Inc.). Continuous variables were 
also adjusted for age and sex using linear regression anal-
ysis. Statistical significance was set at P < 0.05. The func-
tional microbes and metabolites that primarily drive the 
difference among the CN, aMCI, and AD groups were 
determined using MaAsLin2, and statistical significance 
was set at an FDR-corrected P value of < 0.25. The corre-
lations between the microbiome, metabolome, and clini-
cal indices were analyzed using DIABLO or Spearman’s 
rank correlation coefficient. The statistical significance 
was set at a correlation coefficient of r > 0.3.

Results
Demographic and clinical characteristics 
of the participants
In total, 32 individuals with AD (including 8 mild, 17 
moderate, and 7 severe according to the MMSE), 32 indi-
viduals with aMCI (aMCI group), and 32 cognitively nor-
mal people (CN group) were enrolled in this study. No 
significant differences were found in years of education, 
marital status, or living status among the three groups 
(Table  1). The mean MoCA and MMSE scores in the 
AD group were 9.56 ± 6.44 and 12.56 ± 6.44, respectively, 
which were much lower than those of the aMCI and CN 
groups, and the MoCA and MMSE scores in the aMCI 
group were also significantly lower than those in the CN 
group after adjusting for age and sex (Table  1). Moreo-
ver, periodontal examination showed that the number of 
teeth in the CN group was significantly greater than that 
in the AD group, while the CAL, CAL > 3 mm%, PLI, and 
BOP% in the AD group were significantly higher than 
those in the CN group, and the CAL and CAL > 3 mm% 
in the AD group were significantly greater than those in 
the aMCI group after adjusting for age and sex. However, 
there was no significant difference in the PPD and GI 
among the AD, aMCI, and CN groups (Table 1).

The structure and diversity of the subgingival microbiota 
of the participants
To compare the composition of the subgingival micro-
biota between the AD, aMCI, and CN groups, we profiled 
the subgingival microbiota composition using 16S rRNA 
amplicon high-throughput sequencing.

Regarding the subgingival microbiota composition 
with 16S rRNA amplicon high-throughput sequencing, 
α-diversity analysis showed that there was no significant 
difference found in the Chao1, observed species, Shan-
non, Simpson, Faith’s PD, and Pielou’s evenness among 
the three groups except for the Goods coverage index 
(Fig.  1a), and the rarefaction curve showed that with 
increasing of sequencing depth, the Goods coverage 
index of the observed samples from all 3 groups tended 
to saturate and approach 1 (Fig. 1b). β-Diversity was pre-
sented using the Bray–Curtis PCoA plot based on the 
ASV abundance, which illustrated that distinct clusters 
were formed among the three groups, and the results of 
the differences analysis showed that there were signifi-
cant differences in microbial structural shifts among the 
three groups (Fig. 1c, d). To further compare the differ-
ent compositions among the three groups at the species 
level, we used cluster heatmaps and the LEfSe method. 
The heatmaps illustrated significant differences in the 
relative abundance of bacteria at the species level in the 
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subgingival plaque of subjects among the AD, aMCI, and 
CN groups (Fig.  1e). We further compared the species 
composition among the AD, aMCI, and CN groups based 
on the linear discriminant analysis effect size method. 
Considering differences in the taxa at the species level 

with a logarithmic linear discriminant analysis score 
of > 2.0 and a P value of < 0.05, we found that the abun-
dance of 19 species was higher in the AD group, that of 
15 species was higher in the CN group, and that of 10 
species was higher in the aMCI group (Fig. 1f ).

Table 1 Participants’ demographic features and clinical characteristics

ANOVA test or Kruskal–Wallis test were used for continuous variables, and chi-square tests was used for categorical variables. Adjustment for age and sex was 
performed using linear regression analysis. “a” means CN group and aMCI group are significantly different, “b” means CN group and AD group are significantly 
different, and “c” means aMCI group and AD group are significantly different

CN (n = 32) aMCI (n = 32) AD (n = 32) P-value Age- and 
sex-adjusted 
P-value

Demographics
 Age (mean ± SD) years 65.75 ± 6.33 72.31 ± 8.07 76.03 ± 8.23 0.0000a,b /
 Male (%) 10 (31.25) 9 (28.13) 20 (62.50) 0.0083b,c /
 Female (%) 22 (68.75) 23 (71.87) 12 (37.50) / /
 Education > 6 years (%) 29 (90.63) 30 (93.75) 33 (96.88) 0.5866 /

Marital status
 Unmarried (%) 0 (0) 0 (0) 0 (0) 0.1184 /

 Married (%) 32 (100) 30 (93.75) 28 (87.50) / /

 Divorced (%) 0 (0) 0 (0) 0 (0) / /

 Widowed (%) 0 (0) 2 (6.25) 4 (12.50) / /

Living status
 Living alone (%) 3 (9.37) 1 (3.13) 2 (6.25) 0.1120 /

 Living with spouse (%) 27 (84.38) 24 (75.00) 20 (62.50) / /

 Living with children (%) 2 (6.25) 5 (15.62) 4 (12.50) / /

 Other (%) 0 (0) 2 (6.25) 6 (18.75) / /

Neurological indices
 MoCA (mean ± SD) 27.25 ± 1.50 18.88 ± 5.35 9.56 ± 6.44 0.000a,b,c 0.000a,b,c

 MMSE (mean ± SD) 28.34 ± 1.07 24.13 ± 4.29 12.56 ± 6.44 0.000a,b,c 0.000a,b,c

 APOE gene test (e4 carrier frequency%) 1 (0) 14/5 (35.71) 8/6 (75.00) / /

 AV45 PET (positive rate%) 0 (0) 5/3 (60.00) 8/8 (100.00) / /

Periodontal indices
 Number of teeth 25.88 ± 3.25 21.31 ± 6.78 18.47 ± 7.76 0.000a,b 0.023b

 PPD (mean ± SD) mm 2.56 ± 0.68 2.65 ± 0.52 3.05 ± 0.83 0.016b 0.057

 CAL (mean ± SD) mm 3.09 ± 0.95 3.64 ± 0.99 4.61 ± 1.42 0.000b,c 0.009b,c

 CAL > 3 mm (mean ± SD) % 35.72 ± 24.52 48.36 ± 24.28 69.44 ± 26.31 0.000b,c 0.007b,c

 GI (mean ± SD) 1.67 ± 0.24 1.70 ± 0.22 1.81 ± 0.25 0.048 0.302

 PLI (mean ± SD) 1.84 ± 0.26 2.03 ± 0.31 2.22 ± 0.44 0.000b 0.013b

 BOP (mean ± SD) % 48.91 ± 24.21 65.42 ± 19.78 72.18 ± 29.68 0.002b 0.034b

Fig. 1 Different structures and diversity of the subgingival microbiota in the CN, aMCI, and AD groups. a The α-diversity indices Chao1, observed 
species, Shannon, Simpson, Faith’s PD, Pielou’s evenness, and Goods coverage. Statistical significance was set at P < 0.05. b Rarefaction curve 
of the Goods coverage index. With increasing sequencing depth, the Goods coverage index of the observed samples was close to saturation. 
c The structural shifts (β-diversity) presented by the Bray–Curtis PCoA plot based on the ASV abundance. The x-coordinate represents the first 
principal coordinate, the y-coordinate represents the second principal coordinate, and the percentage represents the influence rate of the principal 
coordinates on the sample differences. d Differences among the three groups. The statistical methods of c and d were both Adonis analysis. Data 
are presented as the mean ± SD. Statistical significance was set at P < 0.05. e The heatmap shows the comparisons of the subgingival microbial 
community in cognition-normal people and patients with AD and aMCI at the species level (top 100 species). The x-coordinate represents 
the names of the groups; the y-coordinate represents the taxon at the species level. f LEfSe analysis revealed significant bacterial differences 
in subgingival microbiota among the CN, aMCI, and AD groups. The LDA scores (log10) > 2 and P < 0.05 are listed

(See figure on next page.)
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Next, MaAsLin2 analysis revealed that 16 species were 
associated with cognitive function. Among them, Veil-
lonella parvula (V. parvula), Lancefieldella parvula (L. 
parvula), Prevotella melaninogenica (P. melaninogenica), 

Megasphaera micronuciformis (M. micronuciformis), 
Anaeroglobus geminatus (A. geminatus), Streptococ-
cus anginosus (S. anginosus), Campylobacter gracilis (C. 
gracilis), and Dialister pneumosintes (D. pneumosintes) 

Fig. 1 (See legend on previous page.)
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were negatively correlated with cognitive function, and 
[Eubacterium] yurii, Pseudoleptotrichia goodfellowii (P. 
goodfellowii), Campylobacter rectus (C. rectus), Leptotri-
chia buccalis (L. buccalis), Streptococcus sanguinis (S. 
sanguinis), Actinomyces massiliensis (A. massiliensis), 
Haemophilus parainfluenzae (H. parainfluenzae) and 
Campylobacter concisus (C. concisus) were positively cor-
related with cognitive function (Table S1).

Metabolic profiles of GCF samples of the participants
Multivariate data analysis and clustering of GCF metabolites
To first reveal the profiles of the GCF metabolome, we 
performed nontargeted metabolomics profiling of 74 
GCF samples from the AD, aMCI, and CN groups. After 
removing the internal standards and pseudopositive 
peaks and combining the peaks from the same metabo-
lite, 1116 positive-mode features and 686 negative-mode 
features were identified for use in the subsequent analy-
sis. Multivariate analysis among the AD, aMCI, and CN 
groups was performed with PCA and PLS-DA. In the 
plots of PCA scores, we noted a trend of divergence in 
GCF sample results among the three groups (Fig. 2a, e). 
The PLS-DA models clearly separated the metabolic pro-
files of the three groups (Fig. 2b–d, f–h).

In both positive and negative modes, a total of 165 dif-
ferentially abundant metabolites were identified among 

the AD, aMCI, and CN groups using MaAsLin2, based 
on an FDR-corrected P value of < 0.25. We further clas-
sified them according to their participating pathways or 
functions through KEGG database annotation, and hier-
archical classification was also conducted according to 
the KEGG metabolic pathways with different metabolites 
involved, resulting in the identification of 153 metabolic 
pathways based on the KEGG database. The heat plot 
of the hierarchical clustering results among the three 
groups showed that differentially abundant metabo-
lites in the AD group had significantly different patterns 
of abundance compared to those in the aMCI and CN 
groups (Figure S1).

KEGG enrichment analysis
After annotating the differentially abundant metabolites, 
enrichment analysis of their KEGG pathways was con-
ducted (Figure S2). Enrichment analysis is usually per-
formed to assess whether a group of metabolites have 
been present at a certain functional node, which can 
identify the biological processes most related to biologi-
cal phenomena.

Several pathways contained more types of differentially 
abundant metabolites, such as purine metabolism, amino 
sugar and nucleotide sugar metabolism, lysine degrada-
tion, galactose metabolism, phenylalanine, tyrosine and 

Fig. 2 Typical plots of multivariate statistical analysis. PCA and PLS-DA of the metabolic profiles of GCF samples from the AD, aMCI, and CN groups. 
a, e PCA plot model of GCF. b–d, f–h The PLS-DA model of GCF (negative mode: b–d; positive mode: f–h). The predictions of multivariate statistical 
analysis show a clear discrimination among the CN, aMCI, and AD groups
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tryptophan biosynthesis, aminoacyl-tRNA biosynthesis, 
and pyrimidine metabolism (Table S2).

Correlations of the microbiome, metabolome, and clinical 
indices
Integrative analysis of the microbiome and metabolites
To explore whether the abundance of GCF metabolites 
correlated with the subgingival microbiota, the covari-
ation among the three groups was investigated using 
a multiomics method named DIABLO. Notably, most 
metabolite levels that were elevated in patients with AD, 
such as 1 h-indole-1-pentanoic acid, 3-(1-naphthalenyl-
carbonyl)-, sn-glycerol 3-phosphoethanolamine, L-idi-
tol, D-mannitol, galactinol, and adenine, were positively 
correlated with the majority of AD-enriched species (D. 
pneumosintes and V. parvula). In contrast, the enriched 
species (P. goodfellowii, L. buccalis, and A. massiliensis) 
in cognitively normal people were negatively correlated 
with AD-enriched metabolites and positively correlated 
with N,n-diethyl-2-aminoethanol depletion in these sub-
jects (Figure S3-S5). In summary, these results suggest 
that the altered subgingival microbiota is related to sub-
gingival metabolism to some extent and that the levels of 

GCF metabolites may reflect changes in the abundance 
of these corresponding species. The results of DIABLO 
(Figure S3-S5) also showed a strong positive contribu-
tion of 19 metabolites (Table S3) and five species to the 
discrimination among the CN, aMCI, and AD groups, 
suggesting their possible application as indicators of cog-
nitive impairment severity.

Relationships between differentiated species/metabolites 
and clinical phenotypes
The DIABLO results mentioned above showed a strong 
positive contribution of 19 metabolites (Table S3) and 
five species to the discrimination among the CN, aMCI, 
and AD groups, and the relative abundance of these 
potential biomarkers is shown in Figs. 3 and 4.

Regarding species, as shown in the heatmap of Fig. 5, 
there was a statistically significant negative correlation 
between D. pneumosintes and the scores of cognitive 
scales, including MoCA and MMSE, and a statistically 
significant positive correlation between D. pneumosintes 
and the clinical phenotypes of periodontitis, including 
PPD and BOP%. In contrast, the enriched species (P. 
goodfellowii, L. buccalis, and A. massiliensis) in cognitive 

Fig. 3 Relative abundances of candidate microbial biomarkers. Taxon abundances at the species level were statistically compared in the CN, aMCI, 
and AD groups. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001
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normal people were negatively correlated with the clini-
cal phenotypes of periodontal condition and positively 
correlated with the clinical data of cognitive function. 
Moreover, AD-enriched metabolites such as galactinol, 
sn-glycerol 3-phosphoethanolamine, 1 h-ndole-1-pen-
tanoic acid, 3-(1-naphthalenylcarbonyl)-, D-mannitol, 
L-iditol, leucyl leucine, leu-val, adenine, G-guanidinobu-
tyrate, 5-aminovaleric acid betaine, 2-piperidone, fluvas-
tatin, folinic acid, pro-pro, 2-(2-hydroxyethoxy)phenol, 
deoxyadenosine, DL-arginine, and alanine betaine were 
negatively correlated with the clinical phenotypes of 
cognitive function and positively correlated with the 
periodontal indices, including the PPD, BOP%, CAL, 
CAL > 3  mm%, PLI, and GI. In contrast, N,n-diethyl-
2-aminoethanol was positively correlated with the MoCA 
and MMSE scores and the number of teeth, but nega-
tively correlated with the PLI and BOP%.

Diagnostic value of GCF metabolites for cognitive 
impairment
The diagnostic abilities of the DIABLO models were fur-
ther demonstrated by ROC curve analysis, which showed 
that galactinol (AUC = 0.98 in AD vs. aMCI/CN), sn-
glycerol 3-phosphoethanolamine (AUC = 0.98 in AD 
vs. aMCI and AUC = 0.99 in AD vs. CN), D-mannitol 
(AUC = 0.98 in AD vs. aMCI and AUC = 0.99 in AD vs. 
CN), 1 h-indole-1-pentanoic acid, 3-(1-naphthalenylcar-
bonyl)- (AUC = 0.99 in AD vs. aMCI and AUC = 0.98 in 
AD vs. CN), and L-iditol (AUC = 0.99 in AD vs. aMCI/
CN) had satisfactory accuracy for the diagnosis of AD 
(Fig. 6, Table S4), which may indicate that these metabo-
lites may be useful as potential markers of cognitive sta-
tus. In summary, these results provide insight into novel 
host-microbe interactions that integrates the metabolic 
signatures of subgingival dysbiotic communities from AD 

Fig. 4 Abundances of candidate metabolic biomarkers of aMCI and AD. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001
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patients with periodontitis and identifies potential mark-
ers of AD progression.

Discussion
Periodontitis is one of the most common oral chronic 
inflammatory diseases characterized by the loss of peri-
odontal tissue support, manifested through CAL and 
radiographically assessed alveolar bone loss, presence 
of periodontal pocketing, gingival bleeding, and tooth 
loss [13]. As the initiating factor underlying periodon-
titis, the composition of dental plaque, especially sub-
gingival microbiota, remains in dynamic balance in a 
healthy state, while dysbiosis of the subgingival micro-
biota ecology can lead to inflammation of the periodon-
tal tissues [27, 28]. Previous studies have shown that 
some subgingival microbes such as Porphyromonas gin-
givalis (P. gingivalis) can contribute to microglia activa-
tion, Aβ accumulation, and cognitive impairment [14, 
15]. Based on the association between periodontitis 

and AD, oral-brain axis gains traction gradually [3, 7, 
8], which suggests that the oral microbiota and their 
products can affect the brain either directly invading 
the central nervous system or indirectly through medi-
ating systemic inflammation.

In this study, we combined the periodontal subgin-
gival microbiome and GCF metabolome in patients 
with AD and aMCI for the first time and successfully 
screened 16 microbial species that differed significantly 
in subgingival plaque samples that were significantly 
correlated with cognitive function and 165 differen-
tially abundant metabolites in GCF samples. Multi-
omics DIABLO and Spearman’s correlation analysis 
revealed that the abundance of 19 differentially abun-
dant metabolites in GCF was significantly correlated 
with five differentially abundant species (V. parvula, 
D. pneumosintes, L. buccalis, P. goodfellowii, and A. 
massiliensis) and neurological/periodontal indices, in 
which galactinol, sn-glycerol 3-phosphoethanolamine, 

Fig. 5 Correlations between candidate biomarkers and clinical indices. Heatmap of candidate biomarkers with clinical indices. Spearman’s rank 
correlation between five differential species, 19 differentially abundant metabolites, and 11 clinical indices. Blue and red classes denote negative 
correlation and positive correlation, respectively. *Correlation coefficient r > 0.3
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D-mannitol, 1  h-indole-1-pentanoic acid, 3-(1-naph-
thalenylcarbonyl)- and L-iditol yielded satisfactory 
accuracy (AUC > 0.98) for the potential markers of AD 
and further provided a research base for the oral-brain 
axis hypothesis.

Periodontal conditions and cognitive function
According to the results of the Fourth National Oral 
Health Survey in China, the prevalence of BOP was 88.4% 
among those aged 55 to 64 years and 82.6% among those 
aged 65 to 74 years, likely offsetting the poor periodon-
tal health induced by AD [29]. Although previous studies 
reported conflicting results [30, 31], our results are con-
sistent with those of Martande’s study [30], which found 
that the severity of periodontitis was correlated with the 
severity of cognitive impairment in participants. After 
adjusting for age and sex ratio, CAL and CAL > 3  mm% 
remained significantly higher in the AD group than in 
the CN and aMCI groups. Periodontal indicators did not 

show statistically significant differences in one study with 
a relatively small sample size [31].

Microbial community characteristics
In the current study, β-diversity analysis rather than 
α-diversity analysis of subgingival microbial commu-
nity comparisons revealed significant differences in the 
microbial community among samples from cognitively 
normal individuals, aMCI, and AD patients. One possi-
ble explanation is that all individuals in this study were 
from the same living area (Shanghai, China), which led to 
nonsignificant differences in bacterial α diversity among 
the three groups owing to the high similarity of diet and 
living habits. As cognitive function changes, the com-
position of the subgingival plaque community shifts in 
periodontitis patients. At the species level, the micro-
biota of aMCI and AD patients had higher proportions 
of L. parvula, P. melaninogenica, M. micronuciformis, A. 
geminatus, V. parvula, S. anginosus, C. gracilis, and D. 

Fig. 6 ROC curve of candidate biomarkers for distinguishing the CN group, aMCI group, and AD group. a–d ROC curve of 19 differentially abundant 
metabolites and five differential species for distinguishing the CN group, aMCI group, and AD group
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pneumosintes, whereas the proportions of [Eubacterium] 
yurii, P. goodfellowii, C. rectus, L. buccalis, S. sanguinis, 
A. massiliensis, H. parainfluenzae, and C. concisus were 
higher in the microbiota from cognitively normal individ-
uals. Moreover, the abundance of P. gingivalis and S. san-
guinis was correlated with the severity of periodontitis.

The differential enrichment of these species contributes 
to the differences in the diversity of subgingival plaque 
samples and, to a certain extent, to the function of the 
subgingival microbial community among cognitively 
normal individuals, aMCI patients, and AD patients. For 
instance, we found that V. parvula from the phylum Fir-
micutes may be closely related to the progression of both 
AD and periodontitis. V. parvula is an anaerobic gram-
negative coccus that is part of the normal flora of the oral 
cavity and is an important pathogen in periodontitis. An 
in  vivo study showed that the abundance of V. parvula 
was significantly elevated in the oral plaque biofilms of 
an experimental rat periodontitis model [32]. As an early 
colonizer, V. parvula is also associated with oral malodor 
[33] and coaggregation with other important periodontal 
pathogens, such as Fusobacter nucleatum (F. nucleatum) 
and P. gingivalis [34, 35]. Furthermore, V. parvula is an 
opportunistic pathogen in intracranial infections [36]. V. 
parvula may enter the brain through the blood circula-
tion and stimulate microglia through pathogenic factors, 
such as lipopolysaccharide, to cause neuroinflammation 
and eventually lead to AD. Some recent clinical studies 
also compared the subgingival microbial communities of 
patients with AD and cognitively normal participants and 
found a significant increase in the relative abundance of 
Firmicutes and V. parvula in AD patients [11, 37]. Other 
differential species that have not yet been reported may 
play a significant role in AD development, such as D. 
pneumosintes. Studies have shown that D. pneumosintes 
and other periodontal pathogens such as Aggregatibac-
ter actinomycetemcomitans (A. actinomycetemcomitans) 
have a synergistic relationship in the formation of peri-
odontal plaque biofilms, which could influence PPD and 
CAL, thus participating in the initiation and progres-
sion of periodontitis [38, 39]. The association between 
D. pneumosinte and AD progression requires further 
investigation.

Features of the GCF metabolome
In periodontal tissue, GCF is a type of noninvasive 
peripheral body fluid from blood serum that is anatomi-
cally closer to the cerebrospinal fluid and blood–brain 
barrier. Therefore, diagnostic and prognostic biomarker 
analyses using GCF have the potential to detect patho-
logical changes in patients with AD. In our study, we 
first screened 165 differentially abundant metabolites in 

GCF samples using LC–MS/MS among the three groups. 
After multiomics DIABLO, we further focused on 19 dif-
ferentially abundant metabolites (Table S3), which were 
significantly correlated with five different species (V. par-
vula, D. pneumosintes, L. buccalis, P. goodfellowii, and A. 
massiliensis), and these metabolites possibly separated 
AD patients from cognitively normal people. Changes 
in some differentially abundant metabolites, including 
galactinol from galactose metabolism and adenine and 
deoxyadenosine from the purine metabolism pathway, 
also implicated an association with AD progression.

First, as a key source of energy and a crucial structural 
element in complex molecules, galactose metabolism 
is particularly important for organisms [40]. Galactose 
metabolism disorders may affect brain development and 
even cognitive function. Recent studies have also shown 
that d-galactose can cause memory and learning deficits 
in rats as a senescence agent and can be used to estab-
lish cognitive impairment models in vivo [41]. However, 
the role of galactinol in cognitive function has not been 
reported. Second, the synthesis, degradation, and inter-
conversion of DNA, RNA, lipids, proteins, and carbohy-
drates all require purine metabolism. Purine and purine 
nucleosides are important sources of nucleic acid bio-
synthesis in bacteria and hosts, and adenine nucleoside 
triphosphate synthesized from adenine and adenosine is 
the most direct energy source in organisms. Recent stud-
ies have shown that AD progression is closely related 
to purine metabolism and the downstream signalling 
of purinergic receptors [42]. Purinergic receptors are 
increased in degenerating neurons and around β-amyloid 
plaques and play an important role in regulating the level 
of neuroinflammation [43]. It has also been shown that 
the expression of purinergic receptors in endothelial cells 
of the blood–brain barrier and microglia increases in AD 
patients, which may reflect neuroinflammation caused 
by infection and activation of microglia in the AD brain 
[44]. Metabolites from the periphery, such as periodon-
tal tissue, may also enter the brain. Therefore, purinergic 
receptors have become a new target for the treatment of 
AD in recent years [43]. Finally, it has been shown that 
anxiety, depression, and memory impairment induced by 
d-galactose could be protected by adenosine through its 
antioxidant and neuromodulatory effects in rats, indicat-
ing that cognitive function may be affected by multiple 
metabolic pathways, which needs more exploration.

Oral-brain axis: host-microbial interactions on linking 
the periodontitis to AD progression
Recently, the concept of the oral-brain axis has gained 
substantial traction [3, 7]. Accumulating evidence sug-
gests that microbial dysbiosis or infections may directly 
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influence AD pathogenesis through the nervous system 
and blood circulation pathways or indirectly through 
immune inflammation, endocrine, and metabolic path-
ways [45–48]. As the second largest microbiota in the 
human body, the oral microbiota may affect the patho-
logical process of AD by activating microglia to induce 
inflammation or release metabolites [11]. As an impor-
tant part of the oral microbiota, the subgingival micro-
biota and their metabolic products may affect the 
pathological process of AD through microbial dysbiosis 
and metabolic disorders (Figure S6), which may also have 
the potential to prevent and diagnose AD.

From the results, there were distinct differences in clin-
ical data, the microbial community of subgingival plaque, 
and metabolites of GCF among the cognitively normal 
group and the aMCI and AD groups. Specifically, most 
cognitive impairment-upregulated metabolites showed 
a significantly positive relationship with some enriched 
species in those with cognitive impairment and a sig-
nificantly negative relationship with enriched species in 
cognitively normal subjects. Similarly, downregulated 
metabolites in those with cognitive impairment had an 
opposite relationship with species. These results confirm 
that host and periodontal microorganisms are closely 
related and interact with AD progression. This result sug-
gests that the microbiota and metabolites might be use-
ful tools for predicting AD progression in the future. In 
the current study, an ROC curve was used to evaluate 
how these differentially abundant metabolites indicated 
or further predicted AD progression [49, 50]. The results 
showed that five differentially abundant metabolites, 
namely, galactinol, sn-glycerol 3-phosphoethanolamine, 
D-mannitol, 1  h-indole-1-pentanoic acid, 3-(1-naphtha-
lenylcarbonyl)-, and L-iditol, distinguished the AD group 
from the CN and aMCI groups and yielded satisfactory 
accuracy, but these indicators require further investiga-
tion to demonstrate their clinical significance.

Limitations
However, our study still has certain limitations. First, 
the prevalence of periodontal health is 5.0% in the 
55–64-year-old group and 9.3% in 65–74-year-old 
group in China, and the prevalence of periodontitis is 
69.3 and 64.6%, respectively. Moreover, the severity of 
periodontal disease is positively correlated with age 
[51]. Therefore, age-matched periodontally healthy and 
cognitively normal control subjects were not success-
fully recruited for this study. Second, statistical studies 
have shown that the prevalence and mortality of AD 
in the Chinese Han population increases with age, and 
the prevalence in females is higher than that in males 

[52–54]. Due to the significantly higher mortality in 
elderly female patients with AD than in males and the 
age-related prevalence [55], the mean age of the AD 
and aMCI groups was higher than that of cognitively 
normal controls in this smaller sample size study, and 
there were significantly more male patients than female 
patients in the AD group. Therefore, the AUC values 
and diagnostic abilities of potential biomarkers may be 
affected by age and sex. Third, it was only a hospital-
based cross-sectional study rather than a longitudinal 
cohort, and we could not obtain information regard-
ing the correlations with the species/metabolites and 
conversion of clinical phenotypes (from CN to aMCI/
AD and aMCI to AD). Further investigations, especially 
follow-up cohorts consisting of larger sample sizes and 
age- and sex-matched participants, are warranted to 
validate our results.

Conclusion
This is the first combined subgingival microbiome and 
GCF metabolome study in patients with AD and aMCI, 
which revealed that periodontal microbial dysbiosis and 
metabolic disorders may be involved in the etiology and 
progression of AD, and the differential abundance of the 
periodontal microbiota and metabolites correlated with 
cognitive function may be useful as potential markers for 
AD in the future.
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