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Abstract 

Background Several studies have reported a relationship between retinal thickness and dementia. Therefore, optical 
coherence tomography (OCT) has been proposed as an early diagnosis method for Alzheimer’s disease (AD). In this 
study, we performed a genome‑wide association study (GWAS) aimed at identifying genes associated with retinal 
nerve fiber layer (RNFL) and ganglion cell inner plexiform layer (GCIPL) thickness assessed by OCT and exploring 
the relationships between the spectrum of cognitive decline (including AD and non‑AD cases) and retinal thickness.

Methods RNFL and GCIPL thickness at the macula were determined using two different OCT devices (Triton 
and Maestro). These determinations were tested for association with common single nucleotide polymorphism (SNPs) 
using adjusted linear regression models and combined using meta‑analysis methods. Polygenic risk scores (PRSs) 
for retinal thickness and AD were generated.

Results Several genetic loci affecting retinal thickness were identified across the genome in accordance with pre‑
vious reports. The genetic overlap between retinal thickness and dementia, however, was weak and limited 
to the GCIPL layer; only those observable with all‑type dementia cases were considered.

Conclusions Our study does not support the existence of a genetic link between dementia and retinal thickness.
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Background
Alzheimer’s disease (AD) is the most common form of 
dementia in the elderly, responsible for 60–80% of cases. 
AD is a slowly progressive neurodegenerative condi-
tion that irreversibly impairs cognition and results in a 
complete loss of autonomy [1]. Its main neuropathologi-
cal hallmarks are β-amyloid plaques and neurofibrillary 
tangles composed of hyper-phosphorylated tau [2]. It is 
known that these brain changes start developing up to 
two decades before the dementia onset, and, therefore, 
the identification of early biological markers of the dis-
ease is currently the focus of intensive research.

Nowadays, it is possible to detect these AD-core neu-
ropathological changes while individuals are alive and 
have not yet developed dementia by using different imag-
ing and fluid biomarker techniques, such as positron 
emission tomography, magnetic resonance imaging, and 
cerebrospinal fluid [3]. The currently available biomark-
ers are either expensive or invasive, and, thus, there is 
great interest in identifying novel ones that are sensitive 
and specific to early AD changes but also easy to admin-
ister, inexpensive, non-invasive, and widely accessible. 
Research efforts are now focused on the fields of plasma, 
genomics, and retinal imaging, among others [4–6].

The retina is the neuronal structure of the eye and is 
embryologically derived from the diencephalon, as is the 
optic nerve, and both are considered part of the central 
nervous system [7]. Retinal structures can be visual-
ized in vivo using non-invasive high-resolution imaging 
methods, such as optical coherence tomography (OCT), 
which has been employed for decades in the ophthal-
mology field to diagnose and monitor common ocular 
pathologies, such as glaucoma, diabetes retinopathy, 
and age-related macular degeneration [8]. In the past 
few years, changes in thickness and volume of different 
retinal layers have also been observed in several neuro-
logical disorders, such as optic neuritis, multiple sclero-
sis, Parkinson’s disease, and AD [9]. In AD in particular, 
degeneration of the retinal nerve fiber layer (RNFL) and 
ganglion cell layer (GCL) has been observed in post-
mortem tissue [10]. Multiple publications have shown 
that patients with AD dementia (ADD) and mild cog-
nitive impairment (MCI) present RNFL and GCL thin-
ning compared to healthy controls, as measured in vivo 
by OCT, although other articles have shown no signifi-
cant differences [11, 12]. Interestingly, a recent study 
reported that both retinal structural and vascular meas-
ures were significantly decreased in dementia patients 
vs. cognitively healthy (CH) and MCI individuals but 
found no differences between amyloid positive and nega-
tive dementia patients [13].

Recent advances in the field of AD genetics [6, 14] have 
permitted the identification of several genetic factors 

associated with AD risk. To date, up to 82 different AD 
loci have been uncovered. Furthermore, the linear com-
bination of existing loci using polygenic risk scores (PRS) 
has been demonstrated to be instrumental in the identi-
fication of high-risk populations and as a promising tool 
for selecting patients for clinical trials [6].

Regarding the association of genomics with retinal 
structures, several recent genome-wide association stud-
ies (GWAS) have identified genetic loci determining reti-
nal thickness [15–17]. First, a GWAS using OCT images 
from 68,423 participants from the UK Biobank cohort 
identified 139 genetic loci associated with macular thick-
ness, the most significant ones being highly expressed in 
the retina [16]. In another GWAS also using OCT images 
from 31,434 UK Biobank participants, 46 genetic loci 
associated with the thickness of the RNFL or ganglion 
cell inner plexiform layer (GCIPL, GCL + inner plexiform 
layer) were established, three of which were related to 
foveal hypoplasia and visual acuity [15]. More recently, 
Currant et  al. have also described 111 loci associated 
with the thickness of one or more of the photoreceptor 
cell layers in a GWAS using OCT images from 31,135 
participants from the UK Biobank [17], with a significant 
enrichment of genes involved in rare eye pathologies, 
such as retinitis pigmentosa.

In the present study, we performed a GWAS aimed 
at identifying genes associated with RNFL and GCIPL 
thickness assessed by OCT in a Spanish population with 
different degrees of cognitive impairment, including CH, 
MCI, and dementia (most of them ADD), evaluated in a 
memory clinic. We also constructed polygenic risk scores 
(PRS) for retinal thickness and AD and explored their 
association with RNFL and GCIPL thickness, as well as 
with cognitive status.

Methods
Study population
The study population comprised 3170 participants from 
the Neuro-Ophthalmology Research at Fundació ACE 
(NORFACE) cohort, which was founded in 2014 to 
search for retinal biomarkers of AD and examine the rela-
tionships between retinal changes and different types of 
neurodegenerative disorders [12]. Consecutive individu-
als evaluated due to cognitive decline at Ace Alzheimer 
Center Barcelona between September 2014 and March 
2019 with a diagnosis of CH, MCI, or dementia, and who 
had available GWAS data from the GR@ACE study [18] 
were included in the present analysis.

Participants were recruited from four sources within 
Ace Alzheimer Center Barcelona (ACE): (1) the Mem-
ory Clinic, an outpatient diagnostic unit for individuals 
with cognitive decline that has an agreement with the 
Catalan Public Health System [19], (2) Ace’s Open House 
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Initiative [20], a social program that provides free assess-
ment of the cognitive status of individuals from the com-
munity without the need for a physician’s referral, (3) 
the Fundació ACE Healthy Brain Initiative (FACEHBI), 
a longitudinal research study of aging, lifestyle, cogni-
tion, and biomarkers in individuals with subjective cogni-
tive decline (SCD) [21], and (4) the BIOFACE project, a 
research study of novel biomarkers focused on individu-
als with early-onset MCI [22].

Clinical diagnostic groups
Study participants completed neurological, neuropsycho-
logical, and social evaluations at ACE. For each individ-
ual, a consensus-based diagnosis of cognitive status was 
reached at the time of study recruitment by a multidisci-
plinary team of professionals that included neurologists, 
neuropsychologists, and social workers [19].

Dementia was defined according to the DSM-V cri-
teria [23]. Within the dementia group, ADD [1] repre-
sented 84.3% of cases, followed by vascular dementia [24] 
(8.8%), while the remaining 6.9% included other types of 
dementia, such as dementia with Lewy bodies [25] (2.2%) 
and frontotemporal [26] (0.9%). MCI was defined using 
Petersen’s [27] and the Cardiovascular Health and Cogni-
tion Study criteria [28]. All individuals in the CH group 
had a Clinical Dementia Rating (CDR) score [29] of 0, a 
preserved performance (score ≥ 27) on the Mini-Mental 
State Examination (MMSE) [30, 31] and a strictly normal 
performance on the neuropsychological battery of Fun-
dació ACE (NBACE) [32, 33].

Neuro‑ophthalmological evaluation
In parallel with the cognitive assessment, study partici-
pants underwent a complete neuro-ophthalmological 
evaluation, which lasted about 20  min and was per-
formed by an optometrist. The evaluation comprised (1) 
a review of past ophthalmological diseases, treatments, 
and surgeries, (2) a monocular visual acuity assessment, 
with the participants wearing their habitual correction 
for refractive error using a pinhole occluder and the Early 
Treatment of Diabetic Retinopathy Study (ETDRS) chart 
[34, 35], and (3) an intraocular pressure (IOP) measure-
ment by Icare tonometry [36]. More details can be found 
elsewhere [37]. The ophthalmologist and neurologists 
were blind to each other’s diagnoses.

Optical coherence tomography
Participants were imaged with a 3D-OCT Maestro® (Fast 
Map software version 8.40) and/or a DRI OCT Triton—
Swept Source (SS) OCT (software v.1.22.1; Topcon Co. 
Tokyo, Japan). In the final cohort, 1789 individuals were 
scanned with the OCT Maestro, 1123 with the OCT Tri-
ton, and 582 with both OCT devices performed the same 

day. The OCT exam was completed in about 5–10 min. 
Both eyes were scanned separately. No pupil dilation 
was required. Retinal layer segmentation was performed 
using the Topcon Advanced Boundary Segmentation TM 
(TABS) algorithm as part of the Fast Map software [38]. 
Data from RNFL and GCIPL thickness at the macula 
were analyzed.

Statistical analysis
RNFL and GCIPL thickness measures were scaled before 
analysis. Correlation between macular RNFL and GCIPL 
thickness by eye and OCT dataset were explored by 
means of Spearman correlation analysis. Correlogram 
plots were generated using the corrplot R package [39].

The associations of RNFL and GCIPL thickness meas-
ures with cognitive status were explored by means of 
logistic regression models adjusted by the OCT image 
quality parameter provided by the OCT device, age, sex, 
years of education, APOE genotype, genotyping batch (I/
II), and concomitant ocular diseases/surgeries. A meta-
analysis of the Maestro and Triton OCT cohorts was run 
using meta R package [40] and a fixed effect model. P val-
ues below the 0.05 threshold were considered significant.

Genome‑wide association study (GWAS)
Genotyping was conducted using the Axiom 815  K 
Spanish biobank array (Thermo Fisher) at the Spanish 
National Center for Genotyping (CeGEN, Santiago de 
Compostela, Spain), which contains rare population-
specific variations observed in the Spanish population. 
Genotyping, quality control (QC), and imputation proce-
dures have been described elsewhere [18]. For the OCT 
Triton dataset, 1465 samples were available after QC; for 
the OCT Maestro cohort, after QC and exclusion of sam-
ples included in the Triton dataset, 1705 remained avail-
able for GWAS.

Association analyses between single-nucleotide poly-
morphisms (SNPs) and retinal thickness measurements 
were performed independently by each eye (left, right) 
and OCT device (Maestro, Triton) using a linear regres-
sion procedure, assuming an additive model in Plink 
2 [41]. Only SNPs with minor allele frequency (MAF) 
above 0.01 were kept for analysis. All analyses were 
adjusted by age, sex, genotyping batch (I/II), and con-
comitant ocular diseases/surgeries that could affect reti-
nal thickness, OCT image quality, the first 10 principal 
component (PC) vectors, and cognitive status (demen-
tia, MCI, or CH). Ocular conditions included as adjust-
ing factors in the model were the following: open angle 
glaucoma, maculopathy, retinal surgery, amblyopia, high 
myopia (< −6Dp) or hyperopia (> +6Dp), and intraocular 
pressure > 24 mmHg. The top results were aggregated by 
genomic region and linkage disequilibrium blocks using 
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the clump procedure implemented in Plink 2. Addition-
ally, an interaction term with dementia status (presence 
vs. absence) was included to assess whether the presence 
of the disease modulated the association of the SNPs 
with the retinal thickness measurements. The fixed-
effects meta-analysis procedures implemented in Plink 2 
were used to combine the association analysis from both 
datasets and both eyes.

The GWAS significance threshold was established in 
p = 5e−8; p values below p = 10e−5 were considered sug-
gestive of association. The genomic inflation factor (λ) 
was calculated as the median of the resulting chi-square 
test statistics divided by the expected median of the chi-
square distribution. Manhattan and QQ plots were gen-
erated using qqman R package [42].

Functional analyses
An over-representation analysis was performed, aimed at 
identifying the Gene Ontology (GO) categories and sign-
aling pathways using gprofiler2 R package [43].

Mendelian randomization (MR) analysis
With the aim or investigating the causal relationships 
between retinal structures and dementia, we calculated 
individual polygenic risk scores (PRS) for RNFL and 
GCIPL thickness in the full GR@ACE cohort (N = 17,089, 
including 5195 ADD patients, 2509 non-AD dementia 
patients, 794 MCI, and 8579 CH) based on the genetic 
variants below the genome-wide significance threshold 
described by [15]. For RNFL, 23 available SNPs of the 30 
reported by Currant et al. were used to compute the PRS, 
while, for GCIPL, the full 22-SNP set was used. Similarly, 
the PRS for AD was calculated in the study sample using 
83 SNPs showing genome-wide significant association 
with AD according to [14].

Additive PRSs were computed for AD, RNFL, and 
GCIPL as n

i=0
βxSNPij , where β is the weight for each 

of the variants in the GWAS, and SNPij is the number of 
alleles (0–2 range). PRSs were scaled prior to analysis.

Spearman correlation and linear regression were used 
to explore the relationship between AD PRS and retinal 
PRSs (RNFL PRS and GCIPL PRS) and for retinal deter-
minations and AD PRs and retinal PRSs. The associations 
of AD PRS, RNFL PRS, and GCIPL PRS with cognitive 
status were explored by means of logistic regression 
analysis. All regression models were adjusted for age, sex, 
APOE genotype, years of education, genotyping batch (I/
II), and concomitant ocular diseases; regression models 
for RNFL or GCIPL thickness and AD status were addi-
tionally adjusted by the quality of retinal measures. Meta-
analysis of the OCT Maestro and Triton cohorts was 
performed using meta R package. A p value < 0.05 was 
considered significant in this analysis.

Results
Study population and retinal measurements
The study population included 1847 dementia patients, 
764 MCI patients, and 559 CH individuals from the 
NORFACE cohort (Table 1). As expected, dementia cases 
were older and had lower MMSE scores and fewer years 
of education but a higher prevalence of the APOE E4 
allele and a larger proportion of females.

The analysis of raw RNFL and GCIPL thickness showed 
significant differences among diagnostic groups, with 
dementia patients showing the lowest median values for 
both retinal measures in both eyes. In the adjusted logis-
tic models including only ADD cases, however, retinal 
measurements were not significantly associated with 
dementia status, with the exception of GCIPL meas-
urements in the OCT Maestro cohort, although with 
a reduced effect size (Fig.  1). After meta-analysis, the 
association of GCIPL thickness with dementia remained 
significant, with a similar effect in both eyes (β = 0.98, 
p = 1e−4 and β = 0.98, p = 1.2e−5 for left and right eye, 
respectively); exclusion of non-AD dementia patients 
generated similar results (β = 0.98, p = 5.6e−6 and 
β = 0.98, p = 2.1e−6 for left/right eye).

Correlation analysis in individuals with retinal meas-
ures from both OCT devices (N = 582) showed a strong 
correlation between left and right RNFL thickness 
measures (r = 0.89 for OCT Maestro, r = 0.63 OCT for 
Triton; Supplementary Fig.  1). Similarly, left and right 
GCIPL measures were also strongly correlated in both 
OCT datasets (r = 0.77 for OCT Maestro and r = 0.82 for 
OCT Triton). By contrast, correlations of retinal thick-
ness measures between the two OCT devices were much 
lower, in the 0.26–0.40 range. Interestingly, while in the 
OCT Triton a positive correlation between GCIPL and 
RNFL thickness measures was observed, these two deter-
minations were inversely correlated in the OCT Maestro 
cohort.

Genome‑wide association study (GWAS)
A GWAS of RNFL and GCIPL thickness was performed 
independently by OCT cohort and eye, then results from 
both OCT devices were combined by eye; suggestive sig-
nals from the left eye (p < e−5) were explored for replica-
tion in the right eye, with the aim of filtering out spurious 
associations.

For GCIPL thickness, the meta-analysis of left 
eye OCT Triton and OCT Maestro GWAS results 
(λ = 1.01) identified 72 suggestive signals with a single 
SNP on chromosome 18, rs147136024, showing bor-
derline genome-wide significance (p = 5.78 × 10 − 8; 
Fig. 2). When compared with results from the right eye 
(λ = 0.99), 69 SNPs were consistently associated in both 
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eyes; these SNPs were clustered in 26 suggestive inde-
pendent loci (top SNP p < 5e−8) showing similar effects 
across OCT datasets and eyes, reaching 7 of genome-
wide significance in the combined meta-analysis 
(Table  2, Supplementary Table  1). Of note, two intra-
genic regions showed the largest evidence of associa-
tion: a 13.6-kb region on chromosome 5q33.1, encoding 
two lncRNA genes with opposite transcription direc-
tions (LINC01470 and ENSG00000286749), and a 
57.7-kb region on chromosome 22q11.1 around TPTE 
pseudogene 1 (TPTEP1). Other suggestive signals were 
located near loci previously associated with retinal fea-
tures, myopia, or abnormality of refraction, such as the 
TSPAN10/NPLOC4/PDE6G locus or the retinoid acid 
receptor beta RARB, associated with retinal vasculature 

in a previous GWAS. Enrichment analysis showed an 
over-representation of molecules with binding prop-
erties, many of them involved in transport across 
membranes.

Left eye meta-analysis of OCT Triton and Maestro RNFL 
thickness genome-wide association results (λ = 0.98) iden-
tified 609 SNPs suggestive of association, 45 below the 
genome-wide significance threshold (Fig.  2). Only 388 
of these SNPs showed the same direction of effect in all 
the analyses, representing 71 suggestive genome regions, 
including PTPRD, previously associated with RNFL, or 
FGFR2 and FHIT, both associated with retinal vascula-
ture (Table 2, Supplementary Table 1). Of these regions, 14 
reached the 5e−8 threshold after meta-analysis, including 
a 28.1-kb region on 13q13.3 overlapping the LINC00571 

Fig. 1 Regression models for all‑type dementia and ADD vs. retinal thickness. Beta regression and standard error (SE) are represented



Page 7 of 14Sáez et al. Alzheimer’s Research & Therapy           (2024) 16:38  

gene, a lncRNA gene previously associated with myopia, 
schizophrenia, and, interestingly, educational attainment 
and tau measures. Signals arising from the APOC1/APOE/
TOMM40 locus were also observed on the left eye meta-
analysis but showed opposite effect size directions in the 
OCT Triton and Maestro cohorts on the right eye, not 
reaching even the suggestive significance threshold on final 
RNFL thickness meta-analysis of both eyes. Enrichment 
analysis also highlighted proteins with binding properties 
involved in cellular metabolism.

We did not find overlap between RNFL and GCIPL 
thickness variants. We found no evidence of interaction 
between variants associated with either RNFL or GCIPL 
and either all-type dementia or ADD.

Polygenic risk scores and Mendelian randomization
Correlation between retinal PRSs and retinal thickness 
measures
RNFL and GCIPL PRSs showed significant but weak 
correlations with RNFL and GCIPL thickness measures 
in the range of ρ = 0.06–0.09 for RNFL PRS vs RNFL 
thickness to ρ = 0.16–0.23 for GCIPL PRS and GCIPL 
thickness (Supplementary Fig.  2). Adjusted models 
confirmed the association of retinal PRSs with retinal 
thickness measures, while AD PRS was not associated 
with RNFL or GCIPL thickness (Fig.  3D, Supplemen-
tary Fig.  3, Supplementary Table  3). We then investi-
gated whether any of the SNPs reported by Bellenguez 
et  al. included in the AD PRS were associated with 
RNFL or GCIPL measures at the nominal significance 

Fig. 2 Meta‑analysis of GCIPL and RNFL thickness GWAS (both eyes). Manhattan plots representing  log10p values from adjusted PLINK linear 
regression models by genomic location
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level of 0.05 by fitting adjusted linear regression mod-
els with allelic dosage as a predictor variable (Supple-
mentary Tables 4–7, Supplementary Figs. 4–6). After a 
meta-analysis of the Maestro and Triton OCT results, 
only the rs587709 SNP, located within the leukocyte 
immunoglobulin-like receptor (LIR) cluster on 19q13.4, 
was consistently associated with RNFL thickness in 
both eyes, while two SNPs, rs7384878 (SPDYE3) and 
rs6586028 (TSPAN14), were associated with GCIPL 
thickness in both eyes.

Correlation between retinal PRSs and AD PRS
Aiming to further explore the relationship between 
cognitive status and retinal thickness, AD, RNFL, and 
GCIPL PRSs were calculated in the entire GR@ACE 
cohort, which comprises more than 17,000 individu-
als. Correlation between RNFL PRS and GCIPL PRS 
was 0.34 (Fig.  3A) in the GR@ACE dataset, with little 
variation according to cognitive status (Supplementary 
Fig. 7). The AD and RNFL PRSs showed a weak negative 
correlation in the entire cohort (ρ = −0.019, p = 0.014); 

Fig. 3 Polygenic risk scores (AD PRS, RNFL PRS, and GCIPL PRS). A Pearson’s correlation coefficient between PRSs (GR@ACE). B Adjusted regression 
models for RNFL PRS as predictor of dementia (GR@ACE). C Adjusted regression models for GCIPL PRS as predictor of dementia (GR@ACE). D 
Adjusted regression models for RNFL PRS, GCIPL PRS, and AD PRS as predictors of retinal thickness (meta‑analysis Maestro and Triton) and dementia 
(GR@ACE); beta regression coefficients and  log10p values are shown. OI: left eye; OD: right eye
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in the stratified analysis by cognitive status, the largest 
absolute correlation was observed among MCI patients 
(ρ = −0.072, p = 0.0473), followed by non-AD dementia 
cases (ρ = −0.049) and CH (ρ = −0.026), while this cor-
relation was positive in the ADD group (ρ = +0.021), 
although it did not reach statistical significance (p = 0.13). 
No significant correlations were observed between AD 
PRS and GCIPL PRS for any of the analysis performed 
(Supplementary Fig. 7).

Retinal and AD PRSs as predictors of dementia
We also assessed in the GR@ACE cohort whether demen-
tia (all-type, ADD, and non-ADD) or dementia plus MCI 
status were predicted by the AD PRS, RNFL PRS (Fig. 3B), 
or GCIPL PRS (Fig. 3C) using adjusted logistic regression 
models (Supplementary Table  8, Supplementary Fig.  8). 
As expected, the risk of all-type dementia increased 
with increasing AD PRS scores (β = 0.04, p = 8.5e−50); 
this effect remained significant in the non-ADD group 
(β = 0.01, p = 5.0e−6), although it was smaller in this group 
than in the ADD cohort (β = 0.03, p = 5.4e−26), prob-
ably due to the fact that the study from Bellenguez et al. 
included not only ADD, but also other types of related 
dementia, offering a broader spectrum for genetic associ-
ations. By contrast, neither the RNFL PRS nor the GCIPL 
PRS were associated with the risk of dementia, with 
the exception of the GCIPL PRS and all-type dementia 
(β = 0.01, p = 3.0e−2) and for dementia plus MCI (β = 0.01, 
p = 4.5e−2). Moreover, none of the SNPs reported by Cur-
rant et al. were associated with dementia, apart from two 
SNPs in chromosome 6: rs9398171 within the FOXO3 
and KIF6 genes, conferring a decreased and increased 
risk, respectively, for all-type dementia, although none 
passed the multiple testing correction (Supplementary 
Tables 9–10, Supplementary Figs. 9–10).

Discussion
This article presents the results of a genome-wide asso-
ciation study for macular RNFL and GCIPL thickness on 
more than 3000 individuals with different degrees of cog-
nitive decline (CH, MCI, and different types of dementia, 
mostly ADD). We identified several genetic loci affecting 
retinal thickness, some previously associated with these 
structures or related phenotypes that were replicated 
across eyes and OCT cohorts. Both retinal measures 
showed a strong correlation, but only GCIPL thickness 
showed evidence of association with all-type dementia. 
We assessed genetic overlap between cognitive status and 
retinal thickness using RNFL and GCIPL PRSs as pre-
dictors of dementia (all-type, ADD, and non-ADD), but 
only a weak association was observed between GCIPL 

PRS and all-type dementia. On the other hand, AD 
PRS was not a predictor of RNFL or GCIPL thickness, 
despite three ADD candidate SNPs’ being associated with 
RNFL (rs587709, within the LILRB2 gene) and GCIPL 
(rs7384878, within the SPDYE3 gene, and rs6586028, 
within the TSPAN14 gene).

Several studies have reported significant RNFL thin-
ning in AD compared to CH individuals, while others 
have not (reviewed by Majeed et  al. [44]), but, as reti-
nal thickness decreases with age, it is difficult to estab-
lish a causal relationship between both events. In fact, 
unadjusted analyses from our dataset showed that AD 
cases had thinner RNFL and GCIPL than the CH and 
MCI subjects, but this difference was not observed after 
adjustment for confounding variables. Only a small 
reduction in the GCIPL thickness in dementia patients 
was observed, but this association was no longer signifi-
cant when only patients with ADD were considered, in 
accordance with previous results from our group [12, 45].

Mendelian randomization (MR) uses genetic data as an 
instrumental variable for testing the association between 
the exposure of interest (GCIPL and RNFL thickness) 
and the study outcome (dementia). To our knowledge, 
this was the first time MR was applied to explore this 
association, and our results do not support the exist-
ence of common genetic factors for retinal thickness and 
dementia, either of AD or non-AD dementia types. A 
recent report by Sekimitsu et al. [46] in the UK Biobank 
population described a thicker inner nuclear layer (INL), 
chorio-scleral interface (CSI), and inner plexiform layer 
(IPL) among individuals with higher AD PRS scores, 
although the observed effect was very weak, below our 
statistical power; moreover, neither the individual associ-
ation of the AD SNPs, nor the association of retinal PRSs 
and AD, were explored to fully clarify the relationship 
between retinal thickness and dementia.

Another potential limitation of our study would be the 
differences observed between retinal measures generated 
by the OCT Maestro and Triton devices. These outputs 
are determined by a complex combination of technical 
parameters differing by vendors and OCT technicians 
that may result in discordant estimations of retinal layer 
thickness [47]. To minimize this effect, both datasets 
were analyzed independently, and the association results 
were combined using meta-analysis. Moreover, only 
signals showing concordant effects in both eyes were 
considered.

Another interesting conclusion from our study is the 
suggestion, derived from the adjusted regression mod-
els for AD PRS as a predictor of dementia, that AD and 
non-AD dementia share genetic factors, as previously 
described by other authors [48].
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Conclusions
Our results do not support the existence of a genetic link 
between dementia and retinal thickness, as suggested by 
the lack of association of AD genetic risk factors with 
macular RNFL and GCIPL measures, and, conversely, of 
RNFL and GCIPL genetic determinants with dementia, 
potentially limiting the utility of OCT measures as early 
biomarkers of cognitive decline. Reported associations 
between retinal phenotypes and cognitive status may 
occur via non-genetic risk exposures or may be diluted 
because are mediated by a common risk factor (for exam-
ple diabetes). These mechanisms are probably complex 
enough (due to multiple environmental and genetic fac-
tors) that they cannot be disentangled using our current 
sample size. Much larger efforts are necessary to dissect 
such complex relationships.
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