
Qiang et al. Alzheimer’s Research & Therapy           (2024) 16:16  
https://doi.org/10.1186/s13195-023-01379-3

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Alzheimer’s
Research & Therapy

Plasma metabolic profiles predict future 
dementia and dementia subtypes: a prospective 
analysis of 274,160 participants
Yi‑Xuan Qiang1†, Jia You1,2†, Xiao‑Yu He1, Yu Guo1, Yue‑Ting Deng1, Pei‑Yang Gao3, Xin‑Rui Wu1, 
Jian‑Feng Feng2,4,5, Wei Cheng1,2,4,5* and Jin‑Tai Yu1* 

Abstract 

Background Blood‑based biomarkers for dementia are gaining attention due to their non‑invasive nature and fea‑
sibility in regular healthcare settings. Here, we explored the associations between 249 metabolites with all‑cause 
dementia (ACD), Alzheimer’s disease (AD), and vascular dementia (VaD) and assessed their predictive potential.

Methods This study included 274,160 participants from the UK Biobank. Cox proportional hazard models were 
employed to investigate longitudinal associations between metabolites and dementia. The importance of these 
metabolites was quantified using machine learning algorithms, and a metabolic risk score (MetRS) was subse‑
quently developed for each dementia type. We further investigated how MetRS stratified the risk of dementia onset 
and assessed its predictive performance, both alone and in combination with demographic and cognitive predictors.

Results During a median follow‑up of 14.01 years, 5274 participants developed dementia. Of the 249 metabolites 
examined, 143 were significantly associated with incident ACD, 130 with AD, and 140 with VaD. Among metabo‑
lites significantly associated with dementia, lipoprotein lipid concentrations, linoleic acid, sphingomyelin, glucose, 
and branched‑chain amino acids ranked top in importance. Individuals within the top tertile of MetRS faced a signifi‑
cantly greater risk of developing dementia than those in the lowest tertile. When MetRS was combined with demo‑
graphic and cognitive predictors, the model yielded the area under the receiver operating characteristic curve (AUC) 
values of 0.857 for ACD, 0.861 for AD, and 0.873 for VaD.

Conclusions We conducted the largest metabolome investigation of dementia to date, for the first time revealed 
the metabolite importance ranking, and highlighted the contribution of plasma metabolites for dementia prediction.
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Background
Dementia is one of the most common neurodegenerative 
disorders among the elderly, imposing considerable social 
and economic burden worldwide. As the initial symp-
toms of dementia are often subtle, by the time patients 
seek medical assistance, their brains have often under-
gone pathological changes that will persistently progress. 
Unfortunately, to date, the pharmacological treatment 
options for dementia are scarce. Therefore, identifying 
potential risk factors and developing predictive meth-
ods remain paramount in dementia research. Recently, 
blood-based biomarkers have received considerable 
attention due to their non-invasive nature and feasibility 
in regular healthcare settings.

Metabolites are small molecules that emerge from 
intricate cellular regulatory processes. Their concen-
trations in the blood provide insights into how differ-
ent tissues produce and consume them, giving them 
the potential to serve as indicators of disease processes 
[1]. Recent research has indicated associations between 
blood metabolites and dementia risk [2–6]. However, 
most studies are limited by relatively small sample sizes 
and incomplete coverage of metabolites. The variation 
of metabolomic profiles among dementia subtypes is not 
well-investigated. Moreover, it remains uncertain which 
high-performing metabolites hold the most promise for 
predicting dementia. Prior research on the predictive 
performance of metabolites in dementia and cognitive 
impairment has yielded inconsistent results, with some 
showing positive outcomes [4, 5, 7, 8] and others not [9–
11]. Moreover, previous studies have primarily focused 
on all-cause dementia (ACD) and Alzheimer’s disease 
(AD), but the potential of metabolites to predict vascular 
dementia (VaD) has not yet been investigated. Therefore, 
there is a clear need to conduct comprehensive, large-
scale metabolomic studies that incorporate data on dif-
ferent dementia subtypes.

In this study, we leveraged metabolomic data from 
274,160 individuals to perform an untargeted metabo-
lomic investigation of dementia. Firstly, we comprehen-
sively examined the associations between 249 metabolites 
and incident ACD, AD, and VaD. Then, we assessed the 
magnitude of the metabolites’ contribution to dementia 
prediction and analyzed how metabolites stratified the 
risk of dementia onset. Lastly, we explored the predictive 
performance of the top-ranked metabolites, whether in 
combination with demographic and cognitive indicators 
or not.

Methods
Study cohort
Our study extracted data from the UK Biobank (UKB), a 
prospective cohort comprising over 500,000 participants 

aged 40–69 years during recruitment (2006 to 2010). The 
participants were registered with the UK National Health 
Service, recruited from 22 assessment centers across the 
country, and monitored for an extended period. Among 
them, a random subset of 292,000 participants was char-
acterized using a high-throughput 1H-nuclear magnetic 
resonance (NMR) metabolic biomarker platform devel-
oped by Nightingale Health Ltd. Ethics approval was 
obtained from the North West Multi-Centre Research 
Ethics Committee. All participants provided written 
informed consent. This study was conducted under UKB 
application number 19542.

Plasma metabolite profiling
Our study utilized the metabolomic data from 292,000 
UKB participants. In each plasma sample, 249 meta-
bolic measures were quantified simultaneously, com-
prising 168 absolute levels and 81 derived ratios. The 
comprehensive biomarker profile included cholesterol, 
fatty acids, and low-molecular-weight metabolites, such 
as ketone bodies, amino acids, and glycolysis-related 
metabolites (Table S1). Technical details are available 
at (https:// bioba nk. ndph. ox. ac. uk/ showc ase/ ukb/ docs/ 
NMR_ compa nion_ phase2. pdf ).

Dementia outcome definition
Dementia diagnosis was ascertained by records from 
first occurrence reports (Fields 131,036–37, 130,836–43), 
algorithm definitions (Fields 375, 42,018–25), death reg-
istrations (Fields 40,001–02), and hospital inpatient data 
(Fields 41,270, 41,280). The diagnosis was based on the 
International Classification of Diseases 10th revision 
(ICD-10) codes: ACD (F00, F01, F02, F03, G30), AD (F00, 
G30), and VaD (F01), presented as a primary or second-
ary diagnosis in the health records or a potential cause 
of death in the death register (Table S2). Follow-up vis-
its lasted from the initial assessment center attendance 
(Field 53) to the earliest date of dementia diagnosis, 
death, or the latest hospital inpatient data (March 2023), 
whichever occurred first.

Associated metabolites identification and model 
development
We employed Cox proportional hazard (CPH) mod-
els to assess the associations between 249 metabolites 
and incident ACD, AD, and VaD. Potential confound-
ers, including age, sex, educational years, and APOE ε4 
carrier status, were adjusted as covariates. Multiple test 
corrections were applied using the false discovery rate 
(FDR) approach [12]. Statistical significance was set at Q 
value < 0.05. Metabolites that remain statistically signifi-
cant in the Cox model after FDR adjustment proceed to 
the subsequent selection process.

https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/NMR_companion_phase2.pdf
https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/NMR_companion_phase2.pdf
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To exploit the potential of metabolites as single-
domain predictors for future ACD, AD, and VaD, we 
employed machine learning algorithms to further select 
essential metabolites and derived a metabolic risk score 
(MetRS) regarding each outcome. Specifically, we first 
estimated the importance of theses dementia-associated 
metabolites using information gain, an inherent statis-
tic within the Light Gradient Boosting Machine (Light-
GBM) algorithm [13]. Next, we adopted a sequential 
selection approach employing LightGBM classifiers. 
These classifiers were iteratively refined by incorporat-
ing one metabolite at a time based on the order of pre-
established importance. Iterations ceased when there was 
no significant improvement in the model’s area under the 
curve (AUC) performance, as indicated by three consec-
utive non-significant DeLong statistics [14]. The SHapley 
Additive exPlanations (SHAP) method was employed to 
visualize the metabolites’ risk or protective effect within 
the LightGBM classifier during MetRS development. 
Subsequently, we re-established a LightGBM classifier 
with the metabolites selected earlier and took its output 
risk probabilities as metabolic risk score (MetRS).

To analyze how metabolites stratify the risk of demen-
tia onset, we employed several approaches. Accumulative 
incident rate curves were plotted on populations strati-
fied based on tertiles of MetRS, and hazard ratios (HR) 
were reported between the top and bottom tertiles. Fur-
ther subgroup analysis using CPH regressions was per-
formed on dementia-related factors, such as age, sex, and 
APOE ε4 carrier status.

To explore metabolites’ predictive performance, we 
employed CPH models with three hierarchical predictor 
sets to calculate linear predictor (standardized log–log 
survival) of the 5-year, 10-year, and all incident demen-
tia risks. Model 1 was developed based on MetRS alone. 
Subsequent models integrated MetRS with demographic 
indicators (age, sex, education, and APOE ε4 status) and 
cognitive tests (pairs matching time and reaction time) 
[15]. P value < 0.05 indicated statistical significance.

Statistical analysis
Baseline characteristics of participants were compared 
between different dementia status, with continuous vari-
ables presented as median [interquartile range (IQR)] and 
categorical variables as number (percentage) in Table 1. A 
full comparison of 249 metabolites is available in Table S3.

For the main analysis, we removed metabolite outliers 
defined as values beyond four IQRs from the median. We 
then adjusted natural-log transformed metabolite levels 
for the NMR spectrometer (Field 23,650) by fitting a lin-
ear regression model and scaled the residuals for down-
stream analysis [16]. Individuals with over 20% missing 
metabolite values were excluded from the association 

analysis and prediction modeling. As for the modeling 
of the MetRS, we did not address missing data since the 
LightGBM model, being a missingness tolerant algo-
rithm, can automatically handle it during model training 
and prediction.

To maximize the generalizability and transferabil-
ity of MetRS and its downstream survival analysis, we 
employed a nested cross-validation scheme by spa-
tially partitioning the UKB into ten folds based on the 
geographical locations of assessment centers (Table 
S4). Within each iteration, a LightGBM classifier was 
trained on nine folds and tested on the remaining 
one. This process was iterated until each fold served 
as both a training and testing set. The survival predic-
tion modeling followed the same partitions. Then, all 
predictions from the testing sets were aggregated and 
evaluated using a bootstrap method over 2000 itera-
tions. Notably, hyperparameter tuning was performed 
within the training set (nine folds of data) by randomly 
splitting the data into 80% and 20% for model training 
and validation. The testing set remained untouched 
within each iteration, reserved exclusively for model 
evaluations.

Association analysis and survival prediction analysis 
using CPH regressions were performed with survival, 
survminer, and pROC package in R (v4.2.0). MetRS 
development using LightGBM and its SHAP visualiza-
tion were implemented through LightGBM (v3.3.2) and 
Shap (v0.40.0) under the Python (v3.9) environment.

Results
Cohort characteristics
After excluding participants with dementia at baseline, 
we included 274,160 individuals for metabolomic investi-
gation. Participants’ characteristics stratified by dementia 
status were presented in Table 1. Overall, the median age 
was 58 (IQR: 50–63) years; 147,969 (54%) were females, 
and 259,499 (95.1%) were of white ancestry. Compared 
with the control group, the ACD, AD, and VaD groups 
demonstrated an older age, a greater proportion of males 
and APOE ε4 carriers, lower educational attainment, 
prolonged pairs matching time and reaction time, along 
with an elevated MetRS. During a median follow-up of 
14.01  years (IQR: 13.24–14.73  years), 5274 (1.92%) par-
ticipants developed dementia, of which 2346 were AD 
and 1221 were VaD.

Identifying metabolites associated with incident dementia
Of the 249 metabolites examined, 143 were significantly 
associated with incident ACD, 130 with AD, and 140 
with VaD (Fig.  1). HR, 95% confidence interval (CI), P 
value, and Q value were reported in Table S5. Generally, 
associations had larger effect sizes for VaD than ACD and 
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AD, consistent with prior studies highlighting a stronger 
cardiometabolic influence on VaD [17].

The strongest positive metabolite-dementia association 
was observed with the ratio of triglycerides to total lipids 
in large low-density lipoprotein percentage (L-LDL-TG%) 
(HR = 1.10, 95% CI 1.06–1.14, Q = 8.44 ×  10−6), notably 
more pronounced in VaD (HR = 1.31, 95% CI 1.19–1.45, 
Q = 2.90 ×  10−6). Conversely, the ratio of cholesteryl esters 
to total lipids in large LDL percentage demonstrated the 
strongest negative association with dementia (HR = 0.87, 
95% CI 0.84–0.90, Q = 1.90 ×  10−10) and specifically with 

AD (HR = 0.88, 95% CI 0.84–0.92, Q = 1.57 ×  10−6). This 
highlighted the close relationship between dementia 
and lipoprotein lipid ratios. In general, the ratios of cho-
lesterol, free cholesterol, and cholesterol esters to total 
lipids showed a protective effect against dementia, while 
the ratios of triglycerides and phospholipids to total 
lipids were predominantly harmful. In terms of absolute 
lipoprotein lipid concentrations, almost all significant 
indicators showed a protective effect against dementia. 
Small high-density lipoprotein (HDL) was significantly 
associated with dementia, whereas large, medium, and 

Fig. 1 Dementia‑associated metabolites in the association analysis. Significant associations (FDR–corrected Q value < 0.05) are shown, with red 
and blue colors respectively indicate the positive and negative effect directions and circle size proportional to the effect size. The most significant 
association for each metabolite group is labeled. Abbreviations: ACD, all‑cause dementia; AD, Alzheimer’s disease; ApoB, apolipoprotein B; CE, 
cholesteryl esters; FC, free cholesterol; Glu, glucose; His, histidine; LA, linoleic acid; LDL, low‑density lipoprotein; L‑LDL, large LDL; LDL‑L, total 
lipids in LDL; LDL‑P, concentration of LDL particles; M‑VLDL‑L, total lipids in medium VLDL; PC, phosphatidylcholines; PL, phospholipids; PUFA, 
polyunsaturated fatty acids; SM, sphingomyelin; VaD, vascular dementia; Val, valine; VLDL‑TG, triglycerides in VLD
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very large HDL were not. Moreover, LDL, intermediate-
density lipoprotein (IDL), and various sizes of very low-
density lipoprotein (VLDL) were broadly associated with 
dementia risk.

Regarding fatty acids, the ω6 polyunsaturated fatty 
acids (PUFA) subgroup was significantly associated with 
dementia. Linoleic acid (LA), in particular, demonstrated 
negative associations (HR range: 0.79 to 0.89, Q range: 
6.42 ×  10−9 to 3.11 ×  10−5), while LA to total fatty acids 
percentage (LA%) showed negative associations with ACD 
and VaD (HR range: 0.81 to 0.94, Q range: 4.63 ×  10−5 to 
0.001). Saturated fatty acids, monounsaturated fatty acids, 
and ω3 PUFA subgroup, including docosahexaenoic acid, 
demonstrated significant associations with ACD and AD. 
Additionally, the ratio of ω6 PUFA to ω3 PUFA was posi-
tively associated with ACD and AD (HR = 1.07, Q range: 
0.003 to 0.008). And regarding other lipids, sphingomye-
lin, total choline, phosphatidylcholines, and phosphoglyc-
erides exhibited protective effects against dementia (HR 
range: 0.81 to 0.94, Q range: 8.31 ×  10−6 to 0.03).

In the glycolysis category, glucose was the only metab-
olite significantly associated with dementia incidence: 
ACD (HR = 1.08, 95% CI 1.04–1.12, Q = 4 ×  10−4), AD 
(HR = 1.07, 95% CI 1.01–1.12, Q = 0.007), and VaD 
(HR = 1.18, 95% CI 1.06–1.31, Q = 0.006).

As for amino acids, branched-chain amino acids 
(BCAAs) demonstrated strong associations with ACD 
and AD (HR range: 0.89 to 0.95, Q range: 8.31 ×  10−6 to 
0.049). Specifically, valine, leucine, and total BCAAs 
were significantly associated with ACD and AD, while 
isoleucine was exclusively associated with AD. Notably, 
histidine was the only amino acid significantly associated 
with VaD risk (HR = 0.85, 95% CI 0.77–0.95, Q = 0.007).

Subgroup analysis produced largely consistent results 
(Table S6-S8). Importantly, BCAAs were associated with 
ACD and AD exclusively in females and APOE ε4 car-
riers. The associations between lipoprotein lipid con-
centrations and fatty acids with dementia were more 
pronounced in males and the elderly.

Metabolite importance ranking and MetRS calculation
Among the 143 dementia-associated metabolites, we iden-
tified the eight most important ones for ACD prediction 
using the sequential forward selection strategy: glucose, 
LA%, L-LDL-TG%, cholesteryl esters to total lipids in IDL 
percentage (IDL-CE%), valine, leucine, cholesteryl esters 
to total lipids in small LDL percentage (S-LDL-CE%), and 
cholesterol in IDL (Fig. 2A). The line chart demonstrated a 
sharp rise in predictive performance when modeling with 
key metabolites, with the curve plateauing as more metab-
olites were incorporated. We further established a MetRS 
for ACD based on the selected metabolites.

We employed the SHAP summary plot to visualize 
each metabolite’s influence in the model (Fig. 2B). Spe-
cifically, glucose ranked highest in metabolite impor-
tance ordering. Participants with higher glucose levels 
(colored in red) were more likely to develop demen-
tia (right side), whereas those with lower levels (blue) 
tended to remain healthy (left). LA% ranked second, 
with lower values enhancing predictions and higher 
values decreasing them. L-LDL-TG% only offered pro-
tection in the lower percentiles, with no obvious risk 
effect at high values. Similar explanations were given 
for the remaining metabolites.

For AD and VaD, eight and nine metabolites were 
respectively selected to construct their MetRS (Fig. 
S1, Fig. S2, Table S9). Generally, LA or LA%, glucose, 
and L-LDL-TG% were important in predicting all three 
types of dementia. Specifically, total BCAAs and sphin-
gomyelin were pivotal for AD prediction, while histi-
dine was crucial for VaD prediction.

MetRS stratifies the risk of dementia onset
Next, we explored how MetRS stratifies the risk of 
dementia onset. Participants with a higher percentile of 
MetRS at baseline exhibited elevated event rates than 
those in lower percentiles, concurrently with an increase 
in age. Within the same percentile of MetRS, males dis-
played a higher risk of dementia compared to females 
(Fig. 3A–C). The Kaplan–Meier survival curves showed 
different cumulative risk trajectories for each tertile 
stratified by MetRS. Individuals within the top tertile 
of MetRS faced a greater risk of developing dementia 
than those in the lowest tertiles (HR range: 1.38 to 2.03, 
P range: 3.97 ×  10−15 to 1.42 ×  10−6, Fig. 3D–F). We also 
evaluated the effect of MetRS on dementia incidence 
in CPH models. An increase of one standard deviation 
(s.d.) in MetRS significantly increased dementia risk (HR 
range: 1.13 to 1.42, P range: 0 to 1.31 ×  10−151). The inclu-
sion of demographic or cognitive indicators in adjusted 
models did not substantially alter effect estimates. These 
results were generally replicated across different sub-
groups (Fig. 3G, Table S10).

Predictive performance of MetRS
We then assessed the predictive performance of 
MetRS for future dementia. For all incident ACD, 
MetRS alone demonstrated an AUC of 0.639 (95% CI 
0.631–0.646). When combined with demographic 
predictors, the AUC of the model elevated to 0.855 
(95% CI 0.849–0.862). Further adding cognitive indi-
cators slightly increased the AUC to 0.857 (95% CI 
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0.851–0.864). Patterns of model performance for 
predicting AD and VaD were similar. The full model 
combining MetRS with demographic and cognitive 
indicators provided optimal predictive performance for 
both AD (AUC = 0.861, 95% CI 0.854–0.868) and VaD 
(AUC = 0.873, 95% CI 0.859–0.887). Utilizing these 
models for predicting 5-year, 10-year, and over 10-year 
probability of dementia, we consistently obtained 
robust results (Fig. 4, Fig. S3, Table S11).

Discussion
Utilizing data from 274,160 UKB participants, we 
compared the NMR-derived metabolic profiles among 
three types of dementia; for the first time, we revealed 
the importance ranking of 249 metabolites and 

assessed their potential in predicting dementia onset. 
Our results not only validated the extensive associa-
tions between plasma metabolites and dementia but 
also indicated that integrating these metabolites into 
dementia prediction models could refine classifications 
for populations at risk and contribute to predictive 
performance.

Lipoproteins are heterogeneous classes of parti-
cles. Importantly, small HDL and its lipid components 
exhibit broad associations with AD, whereas medium 
and large HDL do not. This aligns with the knowl-
edge that small HDL, potentially the only lipoprotein 
that can penetrate the blood–brain barrier (BBB) [18], 
plays essential roles in lipid metabolism, inflamma-
tion, and anti-oxidation within the brain [5, 19, 20]. 

Fig. 2 Metabolites importance ranking and SHAP visualization of modeling based on incident ACD populations. A Metabolites that survived FDR 
corrections in the association analysis further underwent sequential forward selection. The bar chart illustrates the importance of metabolites 
(left axis), ranked in ascending order. The line chart depicts cumulative area under the curve (AUC) values (right axis) as metabolites are included 
in successive iterations. The metabolites ultimately selected for MetRS calculation are highlighted in red. B Individual SHAP values of the selected 
metabolites are ranked according to their contributions. The x‑axis represents the scale of the SHAP values for every metabolite, indicating their 
contribution to the prediction. The color range corresponds to each metabolic value, from blue (low value) to red (high value). Abbreviations: AUC, 
area under the curve; SHAP, SHapley Additive exPlanations
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The relationship between VLDL, LDL, and IDL with 
dementia is less direct since these lipoproteins can-
not penetrate the BBB. Of particular note, the ratios of 
cholesterol, free cholesterol, and cholesterol esters to 
total lipids appeared to have a protective effect against 
the studied dementia types. Conversely, the ratios of 
triglycerides and phospholipids to total lipids seemed 
to be primarily detrimental. The ratios L-LDL-TG%, 
S-LDL-CE%, and IDL-CE%, which have rarely been 
emphasized previously, show significant importance 
in metabolite ranking for dementia prediction in our 

study. An adequate explanation of these findings is yet 
to be realized.

Linoleic acid is the most abundant PUFA in human 
diets. It serves as a structural component of cell mem-
branes and the precursor to the ω6 PUFA family [21]. 
Limited studies examining the associations between LA 
and ω6 PUFAs with dementia yielded inconsistent results. 
Our findings agree with several studies that higher plasma 
levels of LA and ω6 PUFAs are linked to reduced risks of 
developing dementia [22, 23]. Consistent with the known 
pro-inflammatory, pro-atherogenic, and pro-thrombotic 

Fig. 3 MetRS stratifies the risk of dementia onset. A–C Observed event rate for incident ACD, AD and VaD, plotted against MetRS percentiles 
over the entire study population. Blue dots represent males and red dots represent females. The size of each dot is proportional to age. D–F 
Cumulative risk over the observation time for incident ACD, AD and VaD, stratified by MetRS tertiles (light blue, bottom tertile; blue, median tertile; 
dark blue, top tertile). The shaded area indicates the 95% CI of the survival curves. G Regression results of MetRS and dementia outcomes in all 
participants and subgroups. Model 1, MetRS; Model2, MetRS + demographic indicators; Model 3, MetRS + demographic indicators + cognitive 
indicators. Abbreviations: ACD, all‑cause dementia; AD, Alzheimer’s disease; VaD, vascular dementia
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properties of ω6 PUFAs in contrast with ω3 PUFAs [21, 
24], our findings also suggest that elevated ω6 to ω3 ratios 
correlate with a heightened dementia risk [25]. Future 
research is still needed to validate these observations.

Sphingomyelin is an important lipid component of the 
myelin sheath, facilitating electrical impulse conduction 
along axons. In the central nervous system, sphingomy-
elin may influence amyloid precursor protein processing 
and neuronal excitability, thus impacting AD progres-
sion [26, 27]. While previous research has yielded mixed 
results, our findings support that elevated sphingomyelin 
levels correlate with a reduced dementia risk [4, 27, 28]. 
Moreover, our study further advances the understanding 
of sphingomyelin’s potential predictive role in AD.

Glucose was positively associated with all three types 
of dementia and consistently ranked in the top three in 
metabolite importance ordering, uncovering its pivotal 
role in dementia prediction. Elevated glucose is an estab-
lished risk factor for dementia in the elderly, even among 
people without diabetes [4, 6, 29]. Higher levels of glu-
cose have deleterious effects on the aging brain through 

several mechanisms, including glucose neurotoxicity 
[30–32], insulin resistance [33–35], cardiovascular events 
[36, 37], and inflammation [38, 39].

BCAAs, including isoleucine, leucine, and valine, are 
essential amino acids that our body cannot produce and 
must acquire from dietary sources. Their circulating levels 
can be influenced by genetic background and metabolic 
disturbances [40]. BCAAs can penetrate the BBB, serving 
both as an energy source for mitochondria and a nitrogen 
donor for neurotransmitters, highlighting their impor-
tance in preserving brain health. Our findings align with 
prior research suggesting a negative association between 
BCAAs and the onset of ACD and AD [41–45]. We also 
identified a protective effect of histidine on incident VaD.

By integrating key metabolites identified in our asso-
ciation analysis and importance ranking, we developed a 
MetRS for each dementia outcome. Our findings under-
score the potential of plasma metabolites to reclassify 
at-risk populations, setting the stage for proactive inter-
ventions to reduce dementia incidence in the future. 
Moreover, we found that the incorporation of MetRS 

Fig. 4 Prediction of incident ACD, AD, and VaD. Receiver operating characteristic (ROC) curves show the predictive performance of MetRS, 
either alone or in combination with demographic and cognitive indicators, for all incident cases (A–C), as well as for over 10‑year incident cases  
(D–F) of ACD, AD, and VaD. The dotted line indicates an AUC of 0.50 for comparison. AUC estimates and 95% CIs are shown in Table S10. 
Abbreviations: AUC, area under the curve; ACD, all‑cause dementia; AD, Alzheimer’s disease; VaD, vascular dementia
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with demographic and cognitive indicators achieved a 
satisfactory AUC of 0.86, although the absolute enhance-
ment was not substantial. This can be attributed to the 
fact that traditional risk factors, such as hypertension 
and diabetes, already accounted for some of the meta-
bolic changes observed in the development of dementia. 
Further investigation is needed to elucidate this. Further-
more, for the first time, we have unveiled the contribu-
tion of metabolites in predicting VaD.

Our study has several notable strengths. Firstly, unlike 
traditional methods, metabolomics allows for simul-
taneous investigation of hundreds of metabolites in 
blood, providing a comprehensive metabolic profile in 
dementia patients. Secondly, we leveraged the largest 
plasma metabolomics dataset available to date, com-
prising 274,160 participants with a median follow-up of 
14.01 years. Thirdly, we ranked the metabolites by impor-
tance using a machine learning approach and identified 
markers undervalued in previous research. Furthermore, 
we compared the metabolic profiles among ACD, AD, 
and VaD and established a MetRS for each.

Before application in routine care, there are still chal-
lenges to be addressed. Firstly, the present coverage of 
metabolites is lipid-focused, which needs to be expanded 
by additional techniques. Secondly, given that UKB par-
ticipants are predominantly younger, healthier, better 
educated, and of European ancestry, our findings require 
further validation in other populations. Thirdly, we cannot 
conclude any cause-effect relationship due to the observa-
tional nature of our study. In addition, while we identified 
potential dementia cases through hospital admissions, 
death registers, and primary care, our reliance on elec-
tronic health records to ascertain dementia might omit 
subclinical cases, thereby undermining the sensitivity of 
our prediction. Finally, the direct comparison between 
metabolomics parameters and neurodegenerative param-
eters in their ability to predict dementia remains unex-
plored, for which further studies are needed.

Conclusions
Taken together, we are the largest metabolomic study con-
ducted to date. The population-based cohort, the growing 
accessibility of cutting-edge metabolic biomarkers, and the 
refinement of statistical methodologies for intricate pre-
diction modeling have collectively advanced our under-
standing of dementia. The MetRS, being non-invasive, 
avoids the potential risks of lumbar punctures and radio-
logical exams. It can be incorporated into routine check-
ups that involve blood tests more easily. Our findings may 
improve the effective screening of at-risk populations and 
represent a target of choice for the primary prevention of 
dementia in the near future. represent a target of choice 
for the primary prevention of dementia.
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