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Abstract

Background Specific peripheral proteins have been implicated to play an important role in the development of Alz-
heimer’s disease (AD). However, the roles of additional novel protein biomarkers in AD etiology remains elusive. The
availability of large-scale AD GWAS and plasma proteomic data provide the resources needed for the identification
of causally relevant circulating proteins that may serve as risk factors for AD and potential therapeutic targets.

Methods We established and validated genetic prediction models for protein levels in plasma as instruments
to investigate the associations between genetically predicted protein levels and AD risk. We studied 71,880 (proxy)
cases and 383,378 (proxy) controls of European descent.

Results We identified 69 proteins with genetically predicted concentrations showing associations with AD risk. The
drugs almitrine and ciclopirox targeting ATP1AT were suggested to have a potential for being repositioned for AD
treatment.

Conclusions Our study provides additional insights into the underlying mechanisms of AD and potential therapeutic
strategies.
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Summary box

What is already know on this topic

There is one study evaluating associations between genet-
ically predicted protein levels in dorsolateral prefron-
tal cortex and risk of Alzheimer’s disease (AD); another
study focuses on 38 dementia-associated proteins to
determine associations of their genetically predicted
levels in plasma with AD risk; a third study assesses 184
cerebrospinal fluid proteins, 100 plasma proteins, and
27 brain proteins using protein quantitative trait loci as
instruments for their associations with AD risk. Exist-
ing studies did not systematically evaluate associations of
predicted levels proteins across the proteome in plasma
using genetic prediction models, findings of which may
identify novel proteins to confer translational perspective
for risk assessment and therapeutic strategies of AD.

What this study adds

Our study identifies 69 potential AD-associated proteins
in plasma using comprehensive genetic prediction mod-
els as instruments. We also prioritize drugs almitrine and
ciclopirox targeting ATP1A1 to have a potential for being
repositioned for AD treatment.

How this study might affect research, practice, or policy
The promising proteins identified in our study could be
further investigated for their roles in AD risk assessment
and therapeutic strategies.

Introduction

Alzheimer’s disease (AD), the most common cause of
dementia, has become a growing public health concern
due to an unprecedented increase in life expectancy glob-
ally. In the USA, reported deaths from AD have increased
146.2% between 2000 and 2018, making it the sixth lead-
ing cause of death [1]. It is predicted that the annual cost
of caring for AD patients will reach to a trillion dollars
by 2050. AD is an irreversible and progressive disorder
with neuropathological changes often occurring long
before any symptom becomes apparent. The abnormal
accumulation of amyloid-beta (AP) plaques, a hallmark of
AD, is known to occur as early as two decades before the
onset of clinical symptoms [2]. Abnormal phosphoryla-
tion of tau, the second canonical AD protein aggregate,
is believed to occur shortly thereafter (15-20 years before
symptom onset) [3]. While a great deal of research effort
has focused on targeting pathological AP aggregates and
tau neurofibrillary tangles, several drugs were approved
by U.S. Food and Drug Administration (FDA), including
Aduhelm® [4] and Leqembi® [5]. These approved drugs
could relieve symptoms while whether they can cure AD
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relies on further analyses. As a result, it is critical to iden-
tify novel biomarkers and biological pathways that may
contribute to AD risk.

Physiological changes that take place outside the brain
(e.g., immune, vascular, and metabolic changes) have been
shown to directly influence the function of neural cells
and relate strongly to risk of developing AD [6, 7]. The
identification of circulating peripheral proteins that drive
the associations between peripheral biological changes
and increased risk for AD may enhance our understand-
ing of AD pathogenesis and thereby inform future thera-
peutic strategies. In addition to AP and tau, a number of
proteins have also been recognized to be related to AD
[8]. Translational and epidemiological research indicates
that biological processes which operate outside of the cen-
tral nervous system can contribute considerably to one’s
risk of developing AD [6, 9]. These peripheral biological
processes can be reflected in plasma and serum protein
composition, i.e., secreted proteins. Identifying proteins
that are causally associated with AD-relevant outcomes
will deepen our understanding regarding how peripheral
molecular changes, biological pathways, and regulatory
mechanisms influence AD risk.

AD is highly heritable. Twin and family studies sup-
port that genetic factors could play a role in at least 80%
of AD cases [10]. A recent genome-wide association
study (GWAS) has identified 29 independent disease-
associated risk loci by studying 71,880 (proxy) cases and
383,378 (proxy) controls of European ancestry [11]. The
present study aimed at identifying novel protein biomark-
ers for AD through evaluating the associations between
genetically predicted protein concentrations and AD risk,
a design of proteome-wide association study (PWAS).
Similar to the design of Mendelian randomization (MR)
and transcriptome-wide association study (TWAS)
[12-15], such a design can potentially reduce common
biases imbedded in conventional epidemiological studies,
such as selection biases, residual confounding, or reverse
causality. We established and validated comprehensive
protein genetic prediction models to fully capture the
genetically regulated components of protein levels by
using both cis- and trans-acting elements, thus provid-
ing higher statistical power than only using cis-acting ele-
ments alone (a common practice for related studies). We
then related genetically predicted plasma concentrations
to AD risk and, in doing so, causally implicated 69 circu-
lating proteins in the AD pathogenesis, shedding light on
the peripheral biology of AD.

Methods

The genome and plasma proteome data of European
descendants included in the INTERVAL study (sub-
cohort 1 and subcohort 2) was used to establish and
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validate protein genetic prediction models. Detailed
information about the INTERVAL study dataset has been
described elsewhere [16]. In brief, participants were aged
18-80 and were generally in good health. The SOMAscan
assay was used to measure the relative concentrations of
3620 plasma proteins or protein complexes. Quality con-
trol (QC) was performed at the sample and SOMAmer
level. After excluding eight non-human protein targets,
a total of 3283 SOMAmers remained for further study.
DNA was used to assay~ 830,000 variants on the Affy-
metrix Axiom UK Biobank genotyping array. Standard
sample and variant QC was conducted, as described in
the original publication [16]. SNPs were further phased
using SHAPEIT3 and imputed using a combined 1000
Genomes Phase 3-UK10K reference panel via the Sanger
Imputation Server, resulting in over 87 million imputed
variants. Such SNPs were filtered using criteria of (1)
imputation quality of at least 0.7, (2) minor allele fre-
quency (MAF) of at least 5%, (3) Hardy—Weinberg equi-
librium (HWE) p>5x107° (4) missing rates<5%, and
(5) presenting in the 1000 Genome Project data for Euro-
pean populations. In total, there were 4,662,360 variants
passing these criteria.

In subcohort 1 (N=2481), protein levels were log
transformed and adjusted for age, sex, duration between
blood draw and processing, and the first three principal
components of ancestry. For the rank-inverse normal-
ized residuals of each protein of interest, we followed
the TWAS/FUSION framework [17] to develop genetic
prediction models, using nearby SNPs (within 100 kb)
of potentially associated SNPs as potential predictors. A
false discovery rate (FDR)<0.05 and P-value<5x1078
were used to determine potentially associated SNPs in
cis- and trans- regions, respectively. We defined cis-
region as a region within 1 Mb of the transcriptional
start site (TSS) of the gene encoding the target protein
of interest. Subsequently, we extracted all SNPs located
within 100 kb of the aforementioned potentially associ-
ated SNPs to serve as potential predictors for establish-
ing protein prediction models, excluding any ambiguous
SNPs. In order to include potential predictors from both
cis and trans regions, we converted all the chromosome
numbers to Z and combined them as a single pseudo
chromosome. Four methods, namely, best linear unbi-
ased predictor, elastic net, LASSO, and topl, were used
for establishing the models. For developed protein pre-
diction models with prediction performance (R?) of
at least 0.01 [15, 18—23], which is a common threshold
used in relevant studies, we further conducted external
validation using subcohort 2 (N=820) data. In brief, we
generated predicted expression levels by applying the
established protein prediction models to the genetic data,
and then compared the predicted v.s. measured levels
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of each protein of interest. We selected proteins with a
model prediction R? of>0.01 in subcohort 1 and a cor-
relation coefficient of>0.1 in subcohort 2 for the down-
stream association analysis.

To assess the associations between genetically pre-
dicted circulating protein levels and AD risk, we applied
the validated protein prediction models to the sum-
mary statistics from a large GWAS meta-analysis of AD
risk [24]. Instead of using the conventional approach of
including clinically diagnosed AD alone, this GWAS
combined clinically confirmed and parental diagnoses
based by-proxy phenotypes, which has been demon-
strated to confer great value in substantially increasing
statistical power [25]. In brief, this study included a
total of 85,934 cases (39,106 clinically diagnosed AD
and 46,828 proxy AD) and 401,577 controls of European
ancestry, which were obtained from various sources
including The European Alzheimer & Dementia Biobank
dataset (EADB), GR@ACE/DEGESCO study, The Rot-
terdam Study (RS1 and RS2), European Alzheimer’s
Disease Initiative (EADI) Consortium, Genetic and Envi-
ronmental Risk in AD (GERAD) Consortium/Defining
Genetic, Polygenic, and Environmental Risk for Alzhei-
mer’s Disease (PERADES) Consortium, The Norwegian
DemGene Network, The Neocodex—Murcia study (NxC),
The Copenhagen City Heart Study (CCHS), Bonn stud-
ies, and UK Biobank. Detailed information on study par-
ticipants as well as genotyping and imputation methods
for the samples from each of the included study can be
found in the supplementary files of the original GWAS
paper [24]. Risk estimates for the single marker associa-
tion analyses were adjusted for sex, batch (if applicable),
age (if applicable), and top principal components (PCs).

The TWAS/FUSION framework was used to determine
the protein-AD associations, by leveraging correlation
information between SNPs included in the prediction
models from the phase 3, 1000 Genomes Project data of
European ancestry [17]. We calculated the PWAS test
statistic Z-score=wZ/(w'E, w)"%, where the Z is a vec-
tor of standardized effect sizes of SNPs for a given pro-
tein (Wald z-scores), w is a vector of prediction weights
for the abundance feature of the protein being tested, and
the X is the LD matrix of the SNPs estimated from the
1000 Genomes Project as the LD reference panel. The
Bonferroni correction P-value<0.05 was used to deter-
mine significant associations between genetically pre-
dicted protein concentrations and AD risk.

Ingenuity Pathway Analysis (IPA, Ingenuity System
Inc, USA)) and Protein—Protein Interaction analysis
via STRING database (version 12.0) with 0.400 confi-
dence level [26] was implemented to cluster and clas-
sify enriched pathways for the identified proteins using
default interaction resources, including Textmining,
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Experiments, Databases, Co-expression, Neighbor-
hood, Gene Fusion, and Co-occurrence. We also inves-
tigated potentially repositionable drugs targeting the
genes encoding associated proteins, by using the GREP
(Genome for REPositioning drugs) tool [27]. We fur-
ther conducted molecular docking analysis considering
ATP1A1 protein as the drug target protein and almitrine
and ciclopirox as the drug agents [28].

Results

In this study, potential predictors were identified for 1870
proteins, and protein prediction models were successfully
established for 1864 proteins. For the 1413 of the remain-
ing proteins, there was no SNP showing an association at
FDR<0.05 for cis SNPs and P-value<5x1078 for trans
SNPs. After internal and external validation, there were
1389 proteins showing internal and external validation
performance of R?>0.01. The median external validation
R? was 0.06. There were 459, 189, and 38 proteins that
showed external validation R?>0.1, 0.2, and 0.5, respec-
tively. Overall, proteins that could be predicted well in
INTERVAL subcohort 1 also tended to be predicted well
in subcohort 2 in external validation analyses (a corre-
lation coefficient of 0.96 for R? in two data sets; Fig. 1).
Using the TWAS/FUSION framework, we examined the
association for a total of 1340 proteins. For the remain-
ing 49 proteins, more than half of the SNPs included
in the models were not present in the AD GWAS sum-
mary; therefore, their associations with AD risk were not
considered. We identified 69 proteins with genetically

0.8

R%=0.96

y =1.01 x - 0.00087,

External validation R? (subcohort2)

0.0 0.2 0.4 0.6
Cross validation R? (subcohort1)

Fig. 1 Performance of protein expression prediction models
in INTERVAL subcohort1 and subcohort2 datasets for proteins
showing internal and external validation performance of R?>0.01
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predicted concentrations showing associations with AD
risk after Bonferroni correction (P-value<3.01x107°)
(Table 1; Fig. 2). Of those 69 proteins, positive associa-
tions were observed for 45 of them, and inverse associa-
tions were observed for 24 (Table 1; Fig. 2).

For those proteins associated with AD risk, the Core
Analysis was performed in Ingenuity Pathway Analy-
sis. Assembly of RNA Polymerase I Complex and DNA
Double-Strand Break Repair by Non-Homologous End
Joining were two canonical pathways showing signifi-
cant enrichments at P<0.05 (Table S2; Figure S1). In
the Network Analysis, Cell-To-Cell Signaling and Inter-
action, Hematological System Development and Func-
tion, Immune Cell Trafficking was identified which
involved 19 associated proteins (Table S3; Figure S2).
Based on the Disease and Biological Functions analy-
sis, the top disease functional categories identified were
shown in Table S4.

Protein interactions of 69 associated proteins were
investigated using the STRING database (Figure S3). In
the network, five proteins (ILT-4, PRPC, SHPS], Siglec-3,
and Siglec-9) had three or more interactions with other
proteins. Among them, Siglec-3 (known as CD33) was
reported as a risk factor for AD and both the mRNA
level and protein abundance were found to be increased
in AD patients compared to the age-matched controls
[29]. This finding is consistent with our current study
(Z-score=4.47, P-value=7.78 x1079).

Based on The Anatomical Therapeutic Chemical (ATC)
test using GREP, the drugs almitrine and ciclopirox
targeting ATP1A1 were suggested to have a potential
for being repositioned for AD treatment (odds ratio
(OR)=63.0; P=0.022 for almitrine; OR=35.9, P=0.035
for ciclopirox).

For molecular docking analysis, we downloaded the
3D structure of ATP1A1 protein from Protein Data Bank
(PDB) with source code 3KDP and almitrine and ciclopirox
drug from the PubChem database [30, 31]. AutoDock-Vina
produced —7.6 kcal/mol binding energy for ATP1A1 pro-
tein with almitrine drug agent and —6.2 kcal/mol binding
energy for ATP1A1 protein with ciclopirox drug agent.
Figure 3 showed the 3D structure (left) and 2D schematic
diagram (right) of the ATP1A1 potential target and almi-
trine drug with interacting amino acids: Leu80, Thr81,
Met164, Argl98, Phe245, Ala271, Thr272, Ala274, Ser275,
Asp740, Val741, GIn744, and Ala745. Figure 4 showed the
3D structure (left) and 2D schematic diagram (right) of the
ATP1A1 potential target and ciclopirox drug.

Discussion

To our knowledge, the present study is the first large
population-based study to systematically investigate the
associations between genetically predicted circulating
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Fig. 2 Associations Z scores for proteins showing an association at Bonferroni corrected P-value <0.05 with AD risk

Fig. 3 The 3D structure (left) and 2D schematic diagram (right) of the ATP1A1 potential target and almitrine drug

protein concentrations in plasma and AD risk using
genetic instruments of comprehensive protein prediction
models. Overall, we identified 69 proteins that were sig-
nificantly associated with AD risk after Bonferroni cor-
rection. If validated in future studies, our findings could
add substantial new knowledge to the etiology of AD and
provide a list of protein markers to facilitate precision
preventive or therapeutic trials of AD.

Recently, plasma proteins including Af3,, and phos-
phorylated tau (p-tau2l7, p-taul8l, and others) have
been identified as promising plasma biomarkers for
clinically and pathologically defined AD [32-34]. While

these biomarkers will be incredibly useful for partici-
pant risk stratification, it remains vitally important to
identify additional AD biomarkers to further under-
stand the pathophysiological processes leading to AD.
By examining associations of genetically predicted pro-
tein levels in plasma with AD risk, we are able to go
beyond a traditional examination of protein-AD associ-
ation and begin to understand whether proteins may be
causally relevant. For example, although plasma levels
of YKL-40 [35] have been associated with AD, we did
not observe evidence of an association for genetically
predicted levels of YKL-40 (Z=1.50; P=0.13). This
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Fig. 4 The 3D structure (left) and 2D schematic diagram (right) of the ATPTA1 potential target and ciclopirox

finding seems to support that although specific proteins
such as YKL-40 could be strong biomarkers, they may
not be causally relevant.

We identified multiple AD-associated proteins using
proteomic and genetic methods that were reported
for the first time (Table 1). For some of them, there is
already existing evidence from functional work sup-
porting their potential links with AD. For example,
cofilin-1, as a major actin depolymerizer in the central
nervous system, plays a crucial role in maintaining the
structure and proper function of neurons [36]. Cofilin
rods, which are primarily composed of actin and cofi-
lin-1 and form in response to stressing conditions, have
been suggested to be associated with neurodegenera-
tive diseases such as AD by disrupting dendritic trans-
portation and inducing synaptic dysfunction [36, 37].
Additional research is warranted to understand the
identified associations for the other proteins.

By using GREP, the drugs almitrine and ciclopirox
were suggested to be potentially repositionable for AD
treatment. A double-blind controlled study involv-
ing patients with memory loss, lack of concentration,
impaired mental alertness, and emotional instability
supported that almitrine-raubasine could improve cog-
nitive impairments [35]. Another controlled multicenter
study investigating patients with cognitive decline
(assessed by MMSE, SCAG) again suggested almitrine-
raubasine significantly improved symptomatology com-
pared with placebo [38]. Three other trails conducted
in China involving 206 patients with vascular dementia
also supported significant beneficial effect of almitrine-
raubasine combination on the improvement of cogni-
tive function measured by MMSE [39], although high
risk of bias was observed. Other research supported that
ciclopirox could protect neuronal cells from cell death
and astrocytes from peroxynitrate toxicity [40, 41].

Future work may be warranted to further investigate
whether almitrine and ciclopirox can indeed treat AD.
The strengths of our study include a high statistical
power to identify AD-associated proteins given the large
sample size in the main association analysis. Instead of
merely using individual protein quantitative trait loci
(pQTL) as instruments, we developed comprehensive
protein genetic prediction models using a state-of-the-
art method and externally validated their performance
before applying them to downstream association tests.
Our previous work has supported that compared with
individual QTLs, comprehensive prediction models
can better capture genetically regulated components
of molecular levels and thus further increase statistical
power [42]. In two recently published studies, pQTLs in
plasma were used to assess proteins potentially associated
with AD risk [43, 44]. It is expected that the current work
should have improved power as well as scope compared
with these two existing studies. Particularly, in Walker
et al. [44], only proteins showing an association for the
directly measured levels were tested. In Yang et al. [43],
a relatively smaller dataset (n=636) was used to deter-
mine plasma pQTLs. Correspondingly, a smaller number
of pQTLs for 127 proteins were identified for associa-
tion analyses. In Wingo et al. [45], prediction models
for 376 proteins in brain tissue were established, and 13
proteins were identified to be associated with AD risk.
It is also worth noting that in the previous studies, AD
GWAS summaries involving a less number of cases and
controls were employed. Walker and Yang utilized the
GWAS summary data from the Kunkle study [46], com-
prising 21,982 clinically diagnosed AD cases and 41,944
cognitively normal controls, while Wingo employed the
AD GWAS summary data from the Jansen study [11],
encompassing 71,880 cases (clinically diagnosed AD and
AD-by-proxy) and 383,378 controls. In the present study,
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we utilized a more comprehensive GWAS summary data
from a more recent study, including 85,934 cases (com-
prising 39,106 clinically diagnosed AD and 46,828 proxy
AD) and 401,577 controls. We checked the associations
of the proteins reported in these previous studies in the
current work. Interestingly, only three of the reported
proteins showed consistent associations (same effect
direction and nominal P-value <0.05) in the current work
(Table S5). To further examine the robustness of these
results, we extended our examination by using two inde-
pendent protein genetic prediction models established by
others using independent methods, namely Atherosclero-
sis Risk in Communities (ARIC) European ancestry mod-
els [47] and INTERVAL cis-models [48]. Notably, when
we focused only on plasma, a majority of the examined
proteins did not exhibit significant associations with the
risk of AD when using either ARIC European ancestry or
INTERVAL cis-models. This observation that aligns well
with results based on our developed models suggests that
these prior findings could potentially be false positives.
Again, such a discrepancy could be potentially attributed
to the relatively limited utility of individual pQTL SNPs
in fully elucidating the genetically regulated components
of protein levels. Further studies are warranted to better
characterize the other previously reported proteins.

Several limitations of the current work also need to be
acknowledged. First, our findings may be subject to poten-
tial pleiotropic effects, limiting the ability to draw causal
insights. Second, given the nature of our study of using
genetic instruments to predict plasma protein levels, we
are only able to capture the genetically regulated compo-
nents of the protein concentrations, without incorporat-
ing the components influenced by exogenous exposures.
Like the concept of transcriptome-wide association studies
(TWAS), our proteome-wide association study (PWAS)
aims to investigate the relationship between the genetically
determined components of protein levels and disease risk.
Further prospective studies with measured protein levels
in pre-disease plasma samples are needed to better evalu-
ate the relationship. Finally, when we establish genetic
models to estimate such genetically determined compo-
nents of protein levels, we carefully controlled for age,
sex, duration between blood draw and processing, and top
genetic principal components. However, we acknowledge
that specific factors such as smoking and body mass index
(BMI) were not controlled for during model construction
using the INTERVAL dataset due to a lack of relevant data
available to us [49]. Future studies are in need to validate
our findings.

In conclusion, in this large association study using
genetic instruments, we identified multiple novel
AD risk-associated proteins. If validated with further
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investigations, our study may add additional knowledge
to the underlying mechanisms of AD.
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Additional file 1: Figure S1. Enriched canonical pathways for the identi-
fied associated proteins. The and p-value below each term indicates the
significance level of each pathway. Figure S2. The network was identified
by Ingenuity Pathway Analysis (IPA). A solid line represents a direct interac-
tion between two nodes and a dotted line indicates an indirect interac-
tion. Figure S3. Network nodes represent proteins and edges represent
protein-protein associations.

Additional file 2: Table S1. Risk SNPs identified to be associated with
AD risk in previous GWAS or fine-mapping studies. Table S2. Ingenuity
Canonical Pathways. Table S3. Network analysis. Table S4. Disease and
Biological Functions analysis. Table S5. Association results of the proteins
reported in previous studies.
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