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Abstract

Introduction: The biological basis of cognitive impairment in parkinsonian diseases is believed to be multifactorial.
We investigated the contribution of dopamine deficiency to cognition in Parkinson disease (PD) and dementia with
Lewy bodies (DLB) with dopamine transporter (DAT) imaging.

Methods: We acquired 11C altropane PET, magnetic resonance imaging and cognitive testing in 19 nondemented
subjects with PD, 10 DLB and 17 healthy control subjects (HCS). We analyzed DAT concentration in putamen,
caudate, anterior cingulate (AC), orbitofrontal and prefrontal regions, using the Standardized Uptake Volume Ratio
with partial volume correction, and we related DAT concentration and global cortical thickness to
neuropsychological performance.

Results: DAT concentration in putamen and in caudate were similar in PD and DLB groups and significantly lower
than in HCS. Reduced caudate DAT concentration was associated with worse Clinical Dementia Rating Scale–sum
of boxes (CDR-SB) scores and visuospatial skills in DLB but not in PD or HCS groups. Adjusting for putamen DAT
concentration, as a measure of severity of motor disease, caudate DAT concentration was lower in DLB than in PD.
Higher AC DAT concentration was associated with lower putamen DAT concentration in DLB and with higher
putamen DAT concentration in PD. Higher AC DAT concentration in DLB correlated with greater impairment in
semantic memory and language.

Conclusions: Caudate and AC dopamine dysfunction contribute in opposing directions to cognitive impairment in DLB.
Introduction
Neuropathological studies support multiple causative
factors for cognitive impairment in Lewy body (LB)
diseases. These factors include alpha-synuclein aggre-
gation at synapses [1] and in cortical Lewy aggregates
[2], amyloid deposition [3], and loss of the brain’s neu-
romodulators [4]. Dopamine plays a central role in the
regulation of movement, reward-seeking behavior and
cognition [5]. Dopamine neurons that innervate the
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putamen regulate movement selection [6], while those
projecting to the ventral striatum, caudate, and cognitively
eloquent cortices such as the cingulate cortex participate
in reward-seeking behavior and cognition [7-10].
The dopamine transporter (DAT) is a reliable marker of

dopamine neuron synapses in most brain regions. Localized
to the presynaptic terminals of dopamine cells, the DAT
terminates neurotransmission by reuptaking synaptically
released dopamine [11]. DAT levels are high in the stri-
atum and moderate in multiple cortical regions, including
the anterior cingulate and the orbitofrontal cortex [8,9].
DAT imaging via positron emission tomography (PET)

or single-photon emission computed tomography permits
its measurement in vivo. In LB disorders, striatal DAT
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levels reflect the dopamine concentration and fall as nigral
dopamine neurons are damaged [12]. Whereas reduction
in the putamen DAT concentration correlates with motor
impairment [13,14], reduction in caudate DAT relative
to putamen DAT levels has been linked to cognitive
impairment in dementia with Lewy bodies (DLB) [15,16].
We explored these relations with altropane (2β-carbo-
methoxy-3β(4-fluorophenyl)-n-(1-iodoprop-1-en-3-yl) nor-
tropane), which is a cocaine analog DAT ligand with fast
kinetics [17]. Its high selectivity for the DAT over other
monoamine transporters (dopamine/serotonin = 25:1, with
minimal staining of the locus coeruleus) [18] makes altro-
pane a specific marker of dopamine neurons, compared
with β-CIT (dopamine/serotonin = 2.4:1) [19] or FP-
CIT (dopamine/serotonin = 2.8:1) [20]. 18 F-DOPA, another
dopamine imaging marker, has even lower specificity be-
cause it labels all cells expressing aromatic acid dopamine
decarboxylase [21-23], which include dopamine, serotonin,
and norepinephrine neurons.
In this study we measured 11C-altropane PET retention

to assess the striatal and extrastriatal DAT concentration
in cognitively normal Parkinson disease without dementia
(PD) subjects, DLB subjects and healthy control subjects
(HCS), and related regional DAT levels to cognitive func-
tion. We hypothesized that the putamen DAT concentra-
tion would distinguish the LB groups from HCS, and that,
relative to putamen DAT, the caudate and extrastriatal
DAT concentrations would fall in DLB subjects compared
with the PD and HCS groups. We further hypothesized
that the DAT concentration in the caudate, in midline and
ventromedial frontal cortical regions, and in medial tem-
poral regions would relate to cognitive function.

Methods
Participants
We enrolled 46 individuals, including 19 with PD and 10
with DLB. Seventeen HCS served as a control group.
Subjects were recruited from the Massachusetts General
Hospital Movement Disorders and Memory Disorders
Units. They gave informed consent to participate in this
research study according to the protocol approved by
the Partners HealthCare Inc. Institutional Review Board.
They underwent standardized neurological examin-
ation, cognitive testing, 11C-altropane PET imaging, and
structural brain magnetic resonance imaging (MRI) for
Freesurfer-derived partial volume correction of PET data.
Cohort demographics, clinical features, and neuropsycho-
logical performance are presented in Table 1.
PD subjects fulfilled diagnostic criteria for idiopathic

PD [24] and were nondemented. The diagnosis of DLB
was consistent with current consensus criteria [25].
HCS had normal neurological examinations, no cognitive
complaints, a global Clinical Dementia Rating score of 0
[26,27], and cognitive test scores in the normal range.
Clinical and neuropsychological evaluations
Testing was acquired in the motor ‘on’ state to optimize
cognitive performance [28]. The evaluation of motor
function included the Hoehn and Yahr (H&Y) stage [29]
and the motor subscale of the Unified Parkinson’s Disease
Rating Scale (UPDRS) [30]. The following neuropsycho-
logical tests were administered: Mini-Mental State Exam-
ination (MMSE) [31], Logical Memory I and II (LogIA,
LogIIA) [32], Free and Cued Selective Reminding Test
(Free Recall, Cued Recall) [33], Letter Fluency [34],
Category Fluency [35], 30-item Boston Naming Test
[36], Digit Symbol component of the Wechsler Adult
Intelligence Scale – Revised [37], Trailmaking Tests A
and B [38], and the Visual Form Discrimination Test
[34]. Functional status was assessed with the Clinical
Dementia Rating – sum of boxes (CDR-SB) [26,27].
Dopaminergic drug use was quantified as the L-dopamine
equivalent dose (LED) [39]. We applied correlated factor
analysis to the cognitive test performance of subjects to
form four aggregate cognitive domain factors [40]: execu-
tive (Trailmaking Test B, Digit Symbol), episodic memory
(Logical Memory I and II), semantic memory and language
(Free Recall, Cued Recall, Boston Naming Test, Letter
Fluency, Category Fluency), and visuospatial skills (Visual
Form Discrimination Test). Cognitive domain factor scores
were calculated as the average z score of the nonmissing
component tests. A small number of subjects lacked some
cognitive test scores, primarily due to dementia. No more
than one-half of each factor’s component tests were allowed
to be missing for a given subject.

Imaging acquisition and analysis
Altropane was prepared onsite at the Nuclear Medicine
Department at the Massachusetts General Hospital. PET
images were acquired using an HR +PET camera (Siemens,
Munich, Germany) operating in three-dimensional mode.
After a transmission scan, 15 mCi of 11C-altropane was
injected as a bolus and followed by a 60-minute dynamic
acquisition. PET data were reconstructed and corrected
for attenuation with vendor-provided software. Each
frame was evaluated to verify adequate count statistics
and absence of head motion.
MRI data (Siemens 3 T) were acquired using an MP-

RAGE sequence. Freesurfer [41] (version 5.1 [42]) was
used to align cortical folding patterns [43] and to par-
cellate the cortical surface and segment the subcortical
grey matter into predefined regions of interest (ROIs).
Each subject’s altropane data volume was mapped onto
the Freesurfer-derived cortical surface in native MRI
space by sampling the PET data at the midpoint of the
gray-matter ribbon. ROIs included the putamen, caudate,
thalamus, anterior cingulate (AC; formed by caudal and
rostral AC), orbitofrontal (formed by lateral and medial
orbitofrontal), prefrontal (formed by pars orbitalis, pars



Table 1 Participant characteristics and neuropsychological performance

PD subjects DLB subjects HCS

n 19 10 17

Age (years) 70.1 ± 7.0 72.1 ± 6.2 73.9 ± 6.7

Gender (female/male) 7/12a 1/9b 10/7a

Education (years) 16.4 ± 3.2 16.4 ± 3.5 16.2 ± 2.9

L-Dopamine equivalent dose (mg) 476.2 ± 379.8c 256.0 ± 280.3 0d

Hoehn and Yahr stage 2.5 ± 0.4c 2.25 ± 1.1c 0e

Unified Parkinson Disease Rating Scale 20.9 ± 7.4 f 30.3 ± 2.9b 1.2 ± 2.5e

Duration of motor symptoms (years) 8.6 ± 5.1a 3.0 ± 0.7d –

Mini-Mental State Examination 28.1 ± 2.4a 19.3 ± 9.2b 28.9 ± 1.5a

Clinical Dementia Rating Scale – sum of boxes 0.4 ± 0.6a 7.2 ± 3.7b 0.1 ± 0.2a

Aggregate cognitive domain factors

Executive

Trailmaking Test B (seconds) 112.4 ± 67.7a 298.8 ± 3.0b 73.3 ± 27.7a

Digit Symbol 41.3 ± 9.0a 14.1 ± 11.1b 47.8 ± 21.6a

Episodic memory

Logical Memory I 12.9 ± 5.4a 5.6 ± 1.5b 16.5 ± 3.8a

Logical Memory II 12.1 ± 6.0a 5.4 ± 4.9b 16.1 ± 4.1a

Semantic memory and language

Free Selective Reminding Test 28.8 ± 6.0a 18.4 ± 10.0b 32.9 ± 6.2a

Free and Cued Selective Reminding Test 47.0 ± 1.6 45.3 ± 2.6 46.3 ± 4.0

Boston Naming Test 27.7 ± 1.7a 23.1 ± 7.9b 27.9 ± 3.0a

Letter Fluency 44.9 ± 12.4a 24.0 ± 14.1b 52.7 ± 12.2a

Category Fluency 31.8 ± 6.9a 13.9 ± 9.5b 38.9 ± 15.0a

Visuospatial skills

Visual Form Discrimination Test 28.9 ± 3.5a 24.7 ± 5.0b 30.6 ± 2.4

Values presented as mean ± standard deviation. PD, Parkinson disease without dementia; DLB, dementia with Lewy bodies; HCS, healthy control subjects.
Significant differences (P < 0.05) between groups are indicated as follows: adifferent from DLB; bdifferent from PD and HCS; cdifferent from HCS; ddifferent from
PD; edifferent from PD and DLB; and fdifferent from DLB and HCS.
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triangularis, rostral middle frontal, superior frontal and
frontal pole) and medial temporal (formed by entorhinal,
parahippocampus and hippocampus) areas [44]. Each sub-
ject’s altropane data were rigidly mapped to the MP-RAGE,
and the resulting transformation was used to map the
Freesurfer-derived ROI definitions (cortical gray-matter
ribbon and subcortical gray matter) onto the native-space
PET volume, in order to derive ROI DAT concentration
regional averages.
The DAT concentration was estimated with specific

binding of altropane, which was computed in ROIs using
the standardized uptake value ratio [45], a ratio of uptake
in the target ROI to the reference region measured be-
tween 40 and 60 minutes post injection. Pericalcarine
(visual) cortex was selected as a reference on the basis
of its low DAT concentration [9] and low altropane
binding [17]. To compensate for the dilutional effect
resulting from the low spatial resolution of PET, partial
volume correction was applied to the altropane standardized
uptake value ratio using the correction factor derived
from the convolved binary brain mask (two-component
Meltzer method) as described previously [46]. Global
cortical thickness (GCT, mm) and the caudate volume
(mm3) were derived from Freesurfer.
PET and MRI-derived measurements are presented in

Table 2. DLB subjects showed a small (0.15 mm) but sig-
nificant reduction in GCT compared with PD subjects
(P = 0.003) but not compared with HCS. The caudate
volume did not differ across diagnostic groups.

Data analysis
Group differences for demographic and neuropsycho-
logical measures were assessed with the analysis of
variance test followed by the Tukey post hoc test for
quantitative variables, and with the Fisher’s exact test
for qualitative variables.
Medial temporal and thalamus ROIs were elimi-

nated from the analysis because their group mean DAT



Table 2 Participant imaging data

PD subjects DLB subjects HCS

Putamen DAT (SUVR-PV) 1.20 ± 0.18a 1.26 ± 0.38a 2.21 ± 0.46b

Caudate DAT 1.64 ± 0.35a 1.43 ± 0.48a 2.13 ± 0.46b

Anterior cingulate DAT 1.22 ± 0.12 1.12 ± 0.14 1.19 ± 0.12

Orbitofrontal DAT 1.26 ± 0.16 1.18 ± 0.16 1.27 ± 0.12

Prefrontal DAT 1.21 ± 0.21 1.02 ± 0.05 1.15 ± 0.12

Global cortical thickness (mm) 2.43 ± 0.12c 2.28 ± 0.12d 2.37 ± 0.08

Caudate volume (mm3) 3317 ± 424 3646 ± 647 3554 ± 665

Values presented as mean ± standard deviation. For the PET data, left–right averaged partial volume corrected SUVR values are shown. PD, Parkinson disease
without dementia; DLB, dementia with Lewy bodies; HCS, healthy control subjects; DAT, dopamine transporter; SUVR-PV, standardized uptake value ratio partial
volume corrected. Significant differences (P < 0.05) between groups are indicated as follows: adifferent from HCS; bdifferent from PD and DLB; cdifferent from DLB;
and ddifferent from PD.
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concentration did not differ significantly from 1.0 according
to three tests: a one-sample t test, and two nonparametric
tests (sign test and Wilcoxon signed-rank test). The DAT
concentration in the remaining ROIs was evaluated using
a backward elimination general linear model (GLM)
regressed on the initial predictor pool: diagnostic group,
age, education, putamen DAT, duration of motor symp-
toms, LED and the interaction of diagnosis with each of
the other predictors. The cutoff P value for removal from
the model was 0.01. Note that we did not perform a mul-
tiple comparison analysis across ROIs. For HCS, measures
of duration of motor symptoms and LED were set to 0
(with the addition of slight random normal perturbations).
We sought to use an imaging measure of motor disease

severity in order to isolate it from cognitive performance
[15,16]. The putamen DAT concentration and its inter-
action with diagnosis were thus included as predictor
terms when the putamen DAT concentration was not
the dependent variable. The basis for this approach
rests on the correlation of putamen DAT concentration
with dopamine concentration [12], and on our observation
that the putamen DAT concentration correlates strongly
with UPDRS and H&Y scores in the whole cohort (UPDRS,
r2 = 0.40, P < 0.0001; H&Y scores, r2 = 0.59, P < 0.0001), a
finding shared by prior investigations [47,48]. To touch
base with previous imaging studies [47], we independently
assessed the caudate/putamen DAT ratio. This is a less
general approach than the GLM analysis.
A covariate of caudate volume and its interaction with

diagnosis were also included when the caudate DAT
concentration was the dependent variable. Tukey post hoc
tests were performed as required to follow up significant
diagnostic main effects.
We assessed the relation of the DAT concentration

to cognitive test performance using GLM analyses with
backward elimination (P > 0.01 for removal from the
model), with a pool of predictors that initially included:
diagnostic group, DAT concentration in the selected ROIs
(excluding putamen), interaction of diagnosis with ROIs,
GCT, caudate volume, age, education, duration of motor
symptoms, and LED.
Distributions of residuals for all analyses were checked

and verified as meeting test assumptions.
To exclude the possibility that the GCT covariate was re-

dundant and multicollinear with DAT concentration, given
that the altropane retention data were already partial volume
corrected (using local rather than global volume), we reran
all the analyses without including GCT in the GLM’s initial
predictor pool, and the results were virtually unchanged.
SAS software (version 9.3; SAS Institute Inc., Cary, NC,

USA) and JMP Pro software (version 10; SAS Institute Inc.,
Cary, NC, USA) were used for analysis and graphs.

Results
Subject characteristics
Diagnostic group differences in demographic, clinical,
and cognitive variables are presented in Table 1. As
expected, DLB subjects were more impaired than PD
subjects and HCS on the CDR-SB (P < 0.0001), MMSE
(P < 0.0001), and each cognitive domain factor: seman-
tic memory and language (P < 0.001), episodic memory
(P < 0.0001), executive function (P < 0.0001), and visuo-
spatial skills (P = 0.0001). Cognitive scores in the PD and
HCS groups did not differ significantly. Mean H&Y values
were comparable between DLB and PD subjects (P = 0.50),
and UPDRS scores were higher in DLB subjects than in
PD subjects (P = 0.03). All DLB subjects were taking
cholinesterase inhibitors when the PET scan, neurological
examination and cognitive testing were performed, while
none of the PD or HCS subjects were. Previous studies
have demonstrated that treatment with cholinesterase in-
hibitors does not affect DAT uptake [49].

Group differences in caudate and putamen dopamine
transporter concentration
Unadjusted DAT concentrations in the putamen and the
caudate were similar in PD and DLB subjects, and sig-
nificantly lower than in HCS (P < 0.0001 for putamen,



Marquie et al. Alzheimer's Research & Therapy 2014, 6:52 Page 5 of 10
http://alzres.com/content/6/5/52
P = 0.0002 for caudate, analyses of variance; Table 1,
Figure 1A,B). The use of parkinsonian medications such
as levodopa and dopamine agonists did not contribute to
the regional DAT concentration. For the entire sample,
lower putamen and caudate DAT concentration was as-
sociated with worse motor function (putamen: UPDRS,
r2 = 0.40, P < 0.0001; H&Y, r2 = 0.59, P < 0.0001; caudate:
UPDRS, r2 = 0.24, P = 0.023; H&Y, r2 = 0.24, P = 0.0005).
To study the relationship of the caudate DAT concen-

tration with diagnosis independently of the severity of
motor disease, we evaluated the caudate DAT concentra-
tion using a GLM that included putamen DAT concentra-
tion as a covariate in the original pool of predictors. This
reduced to an analysis of covariance model, in which the
parallel slopes assumption was satisfied for diagnostic
groups (P = 0.43 for the test of difference in slopes). The
adjusted caudate DAT concentration in the PD group was
significantly higher than that for both the DLB (P = 0.041)
and HCS (P = 0.018) groups (Figure 1C). The difference
between PD and DLB subjects reflected a difference in rela-
tive caudate DAT binding, while the difference between PD
subjects and HCS was driven by differences in putamen
DAT levels. We found identical results when we used the
caudate/putamen DAT ratio: a higher ratio in the PD
group than in the DLB (P = 0.01) and HCS (P < 0.0001)
groups (see Additional file 1).

Group differences in cortical dopamine transporter
concentration
We assessed group differences in DAT concentration in
three cortical regions that subserve cognition: AC, orbito-
frontal cortex and prefrontal cortex. Unadjusted DATcon-
centration in the AC was similar across groups (Table 2).
Using a GLM model that related AC DAT concentration
to putamen DAT concentration, global cortical thickness
Figure 1 Diagnostic group differences in putamen and caudate dopam
transporter (DAT) concentration was similar in the PD and DLB groups, and w
caudate DAT concentration was also similar in PD and DLB subjects, and was
caudate DAT concentration was significantly higher in the PD group than in t
variance; DLB, dementia with Lewy bodies; HCS, healthy control subjects; PD,
and other predictors (age, education, LED, duration of
motor symptoms, and the interaction of diagnosis with
each of the other predictors), we found that the diagnostic
group and its interaction with putamen DAT concentra-
tion (P = 0.003) and with GCT (P = 0.008) was related to
the AC DAT concentration (backward elimination GLM;
for the model as a whole, R2 = 0.45, P = 0.003). Specifically,
the relation of diagnostic group and AC DAT concentra-
tion was modified by the putamen DAT concentration,
such that higher putamen DAT was associated with higher
AC DAT concentration in the PD group, with lower
AC DAT concentration in the DLB group, and with an
essentially flat relation for the HCS group. The relation
of diagnostic group and AC DAT concentration was
also modified by GCT, such that higher GCT was associ-
ated with lower AC DAT concentration in the PD group,
with higher AC DAT concentration in the HCS, and with
a flat relation for the DLB group. These effects were lim-
ited to the AC, because the DAT concentration in the
orbitofrontal and prefrontal ROIs did not differ between
groups, even after accounting for differences in putamen
DATconcentration and GCT (Table 2).

Dopamine transporter concentration and cognitive
performance
The diagnosis-dependent association of DAT concentra-
tion in the caudate and AC relative to DAT levels in the
putamen led us to explore the relation of caudate and
extrastriatal DAT concentration to cognitive function.
For these analyses, we related regional DAT concentration
to the CDR-SB, MMSE, and the four aggregate cognitive
domain factors (see Data analysis).
We found in the DLB group alone that lower caudate

DAT concentration was associated both with greater
functional impairment, as measured with the CDR-SB
ine transporter concentrations. (A) Unadjusted putamen dopamine
as significantly lower than HCS (ANOVA, P < 0.0001). (B) Unadjusted
significantly lower than HCS (ANOVA, P = 0.0002). (C) The adjusted
he HCS (P = 0.018) and DLB (P = 0.041) groups. ANOVA, analysis of
Parkinson disease without dementia.



Figure 2 Regional dopamine transporter concentration in the caudate and the anterior cingulate related to cognitive function. In the
DLB group, but not in the PD or HCS groups, loss of caudate dopamine transporter (DAT) concentration was associated with greater
impairment in (A) CDR-SB scores (R2 = 0.84 and P < 0.0001 for overall model; P = 0.0008 for interaction between diagnosis and caudate DAT
concentration) and (B) visuospatial skills scores (R2 = 0.45 and P = 0.0006 for overall model; P = 0.008 for interaction between diagnosis and
caudate DAT concentration). (C) In the DLB group alone, higher anterior cingulate (AC) DAT concentration was associated with greater impairment in
semantic memory and language performance (R2 = 0.69 and P < 0.0001 for overall model; P = 0.0003 for interaction between diagnosis and AC DAT
concentration). Symbols indicate actual values; lines are predicted values from the general linear model. CDR-SB, Clinical Dementia Rating Scale – sum
of boxes; DLB, dementia with Lewy bodies; HCS, healthy control subjects; PD, Parkinson disease without dementia.
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(R2 = 0.84 and P < 0.0001 for model; P = 0.0008 for inter-
action between caudate DAT concentration and diagnosis;
Figure 2A), and with greater visuospatial impairment
(R2 = 0.45 and P = 0.0006 for model; P = 0.008 for inter-
action between caudate DAT concentration and diagno-
sis; Figure 2B). Further, in the DLB group alone, higher
AC DAT concentration predicted greater impairment of
semantic memory and language (R2 = 0.69 and P < 0.0001
for model; P = 0.0003 for interaction between AC DAT
concentration and diagnosis; Figure 2C). The DAT con-
centration was not significantly associated with cognitive
measures in either the PD or HCS groups. In contrast to
DAT concentration, reduced GCT was associated with
impairment in the MMSE (R2 = 0.53 and P < 0.0001 for
model; P = 0.0035 for main effect of GTC) and in episodic
memory (R2 = 0.50 and P < 0.0001 for model; P = 0.009 for
main effect of GCT) in all diagnostic groups.

Discussion
In this study we measured the regional DATconcentration
with altropane PET and related the DAT values to diagno-
sis and cognitive function in nondemented PD subjects,
DLB subjects and HCS. We found that both caudate DAT
and AC DAT concentrations varied across the diagnostic
groups, yet contributed to cognitive function in DLB in
opposing ways: low caudate DAT levels and high AC DAT
levels were associated with greater impairment on cogni-
tive testing.
Consistent with prior reports [50,51], putamen and

caudate DAT concentrations were significantly reduced
in LB disorders compared with HCS, independent of the
presence of dementia. Although unadjusted caudate DAT
concentration was comparable between PD and DLB
subjects, as shown previously [52], the caudate DAT
concentration adjusted for putamen DAT concentration
as a measure of severity of motor disease was significantly
higher in PD subjects compared with DLB subjects and
HCS. These data confirm prior reports showing a higher
caudate/putamen DAT ratio in nondemented PD com-
pared with DLB [47]. The data suggest that when dopa-
mine neurons that project to the putamen are damaged
in LB disorders, a parallel injury of caudate-projecting
dopamine neurons contributes to cognitive impairment.
Although HCS had the highest unadjusted caudate DAT
concentration, we also observed a smaller adjusted caudate
DAT concentration in HCS compared with PD subjects,
driven by the higher putamen DAT signal of HCS.
The AC DAT concentration related to the diagnostic

group, after adjusting for putamen DAT, GCT and their
interactions. Specifically in PD, the AC DAT concentra-
tion decreased as the putamen DAT concentration fell,
whereas it was independent of putamen DAT levels in
HCS. Surprisingly, however, in the DLB group the AC
DAT concentration actually increased as the putamen
DAT concentration fell. Thus, as dopamine cells die and
putamen DAT levels fall into the range associated with
parkinsonism, the pathological processes responsible for
dementia affect how the AC DATconcentration changes.
The relations of caudate and AC DAT concentrations

to cognitive test performance were consistent with the
diagnostic group differences in regional DAT concentra-
tion. Loss of caudate DAT concentration in DLB subjects
was associated with greater functional impairment, as
measured by the CDR-SB, and with greater impairment
of visuospatial skills. Although we are not aware of prior
reports relating caudate DAT levels to visuospatial func-
tion, caudate dopamine levels have been associated with
both executive function [15,53,54] and memory [55].



Figure 3 Model to explain dopamine-associated cognitive impairment in dementia with Lewy bodies. (A) In health, regional dopamine
levels are maintained at a level optimum for cognitive performance (dashed line). In dementia with Lewy bodies (DLB), sensitivity to dopamine
levels increases (green curve). Thus, as caudate dopamine levels fall, cognitive impairment worsens (arrow). (B) Anterior cingulate (AC) dopamine
levels do not fall in DLB, yet they contribute to cognitive impairment. One explanation for this is that the inverted U-shaped curve moves to the
left (red arrow and curve), such that previously optimized dopamine levels (dashed line) now contribute to cognitive impairment.
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We also found that higher AC DAT concentration in
DLB subjects was associated with greater impairment of
semantic memory and language. To interpret this un-
expected result, further research will be necessary to
determine whether, in DLB, the DAT is a faithful marker
of dopamine terminal density and dopamine concen-
tration, or whether DAT levels and dopamine terminal
density diverge. In this respect, striatal DAT levels in pri-
mates correlate tightly with striatal dopamine levels
after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
treatment [12,56]. In addition, DAT levels transiently
downregulate only very early in the course of PD, but do
not appear to do so subsequently [57]. Lastly, we found no
evidence for dynamic regulation of regional DAT levels as a
function of the LED in our cohort, consistent with prior re-
ports [57]. Thus, while it remains possible that AC DAT
upregulation could occur in DLB, thereby reducing released
dopamine to pathophysiological levels, we propose for now
that AC DAT levels in DLB instead reflect dopamine ter-
minal density and the local dopamine concentration.
Prior preclinical and clinical work has demonstrated

an inverted U-shaped relation between brain dopamine
levels and cognition [58,59], such that both excessive
and insufficient dopamine levels impair cognitive perform-
ance. If pathological processes in DLB subjects increased
the curvature of this relation in the caudate, this could ex-
plain how caudate and AC DAT levels in DLB subjects
but not in PD subjects relate to cognition (Figure 3A). In
addition, if pathological processes in the AC of DLB
subjects shifted this inverted U-shaped curve to the left
(or right; Figure 3B), previously optimum dopamine levels
would now impair cognitive function and increases (or de-
creases) in dopamine would further worsen cognition.
Interestingly, cognitively normal PD subjects tolerated

similar caudate and AC DAT levels as DLB subjects,
without detectable impairment on cognitive testing. Dys-
function of the dopamine system therefore appears to
contribute to cognitive impairment in DLB but is not
sufficient for dementia. Other neuropathological factors,
such as alpha-synuclein deposition [1], synaptic dysfunc-
tion [60], amyloid burden [40], and impairment of other
neuromodulator systems [61], must make DLB patients
susceptible to the impact of dopamine dysfunction.
Cortical DAT levels outside the AC did not distinguish

between diagnostic groups or relate to cognitive test per-
formance. This observation may reflect their differential
innervation by midbrain dopamine cell groups [62]. Al-
ternatively, the limited role for the DAT in dopamine
clearance in some regions of the rat prefrontal cortex
[63] may extend to humans. However, we cannot exclude
the possibility that limited sample sizes may have obscured
weak results. Future research with larger sample sizes will
be useful.
Although cortical thickness was not the focus of this

study, we also found that GCT was reduced in DLB
compared with PD, and reduced GCT was associated
with impaired MMSE and episodic memory performance.
These observations are consistent with prior reports of
cortical thinning in DLB [64].
The strengths of this study include the high specificity

of altropane PET for DAT with negligible contamination
from other monoamine transporters, accurate clinical
diagnoses based on international clinical criteria, and the
use of a comprehensive neuropsychological battery. An
important technical note is the value of partial volume
correction in altropane PET analyses, which enabled us
to assess DAT levels not just in the striatum but also in
cortical regions implicated in cognition.

Conclusions
The results of this altropane PET imaging study sug-
gest that dopamine dysfunction in the caudate and in
the AC, along with cortical atrophy, contribute in op-
posing ways to cognitive impairment and dementia in
LB disorders. To the extent that DAT levels reflect
dopamine synapse density in DLB, the association of
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cognitive impairment with both low caudate DAT
levels and high AC DAT levels may limit the potential
benefits of a dopamine-related cognitive therapeutic
for LB diseases.
Note: This article is part of a series on Lewy Body Dementia, edited
by Ian McKeith and James Galvin. Other articles in this series can
be found at http://alzres.com/series/LewyBodyDementia
Additional file

Additional file 1: Diagnostic group differences in the caudate/
putamen DAT ratio. The PD group showed a significantly higher caudate/
putamen DAT ratio than both the DLB (P = 0.01) and HCS (P < 0.0001)
groups. Values are mean ± standard deviation. HCS, healthy control subjects;
PD, Parkinson disease without dementia; DLB, dementia with Lewy bodies;
DAT, dopamine transporter.
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