
Introduction

Alzheimer’s disease (AD) is characterized by a slow 

continued deterioration of cognitive processes. Th e fi rst 

symptoms of episodic memory disturbances might be 

quite subtle. When the patient is assessed for memory 

problems the disease has most probably been ongoing in 

the brain for several years and has most probably induced 

nonrepairable disturbances of important functional 

neuronal networks and loops of the brain. It is a challenge 

to test whether some of these changes could be reversed 

or slowed down with early drug treatment.

Th e recent progress in AD research has provided new 

knowledge for further understanding the pathology 

processes of AD that precede the onset of clinical disease 

by many years. It is still an open question why some 

people can cope with AD brain pathology better than 

others. Do they have greater capacity of neuronal com-

pen sation? Is there ongoing neurogenesis in the brain? 

Th e resistance toward increased pathological burden 

especially observed in highly educated subjects might be 

a sign of increased brain plasticity as well as greater 

cognitive reserve [1].

Since Dr Alois Alzheimer fi rst described the AD 

disease, amyloid beta (Aβ) has played a central role in AD 

pathology. It has not yet been proven that Aβ is the 

primary causative factor of AD. A puzzling observation 

from autopsy AD brain studies has been the weak 

correlation between fi brillar Aβ load in the brain and 

cognition while the amount of neurofi brillary tangles 

signifi cantly correlates with the cognitive status and 

duration of dementia [2-4]. Th e eff ects of Aβ in the 

clinical stages of AD are most probably mediated by the 

presence of neurofi brillary tangles in the brain [5]. In 

addition, a sequential cascade of events including 

oxidative stress reactions, infl ammatory processes and 

neurotransmitter and receptor dysfunction most 

probably contributes to the impairment of cognitive 

function [6].

Molecular imaging techniques have rapidly developed 

during recent years. Th is development not only allows 

one to measure brain structural changes in patients 
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(atrophy, volume changes and cortical thickness) by 

magnetic resonance imaging, but also to visualize and 

quantify brain pathology (fi brillar Aβ, tau, activated 

microglia and astrocytosis) as well as functional changes 

(cerebral glucose metabolism, neurotransmitter and 

neuroreceptor activity) by positron emission tomography 

(PET) (Table 1). Molecular imaging thus provides impor-

tant insight into the ongoing pathological processes in 

AD in relation to clinical symptoms and disease progres-

sion. An important step forward has been in vivo imaging 

of Aβ pathology in AD patients. Although the histo-

patho logical confi rma tion of diagnosis at autopsy is 

impor tant, it refl ects the end stage of a disease that may 

have been ongoing for decades.

Th e new molecular imaging techniques provide possi-

bilities to develop early diagnostic biomarkers for early 

detection of AD at preclinical stages, as well as for 

monitor ing eff ects of drug therapy. Recent research has 

thus also changed the view on incorporating biomarkers 

into the standardized clinical diagnosis of AD as suggested 

by Dubois and colleagues [7,8] and the recommendations 

from the National Institute on Aging–Alzheimer 

Association workgroups on diagnostic guidelines for AD 

[9,10].

Amyloid imaging in Alzheimer’s disease patients

Among the fi rst Aβ PET tracers was Pittsburgh Com-

pound B (11C-PIB) when 16 AD patients were initially 

scanned in Sweden [11]. Th e high 11C-PIB retention ob-

served in cortical and subcortical brain regions of mild 

AD patients compared with age-matched healthy sub-

jects has consistently been confi rmed with 11C-PIB in 

several other studies (for a review see [12-14]). Several 

other Aβ PET tracers have also been tested in AD and 

control patients [12,15] although so far 11C-PIB is the 

most explored. 18F-labeled tracers will probably be more 

suitable for use in the clinic, with their longer half-life. 
18F-FDDNP was the fi rst 18F-PET tracer used for 

visualizing Aβ plaque in AD patients [16], showing lower 

binding affi  nity to Aβ plaques than 11C-PIB but also 

suggested to bind to neurofi brillary tangles [16,17]. Th e 
18F-labeled Aβ PET tracers 18F-fl utemetamol, 18F-fl orbetapir 

and 18F-fl orbetaben have shown promising results in AD 

patients [18-20].

Th e PET Aβ tracers quantify fi brillar Aβ in the brain by 

binding in the nanomolar range to the Aβ peptide [21]. 

Th e in vivo 11C-PIB retention correlates with 3H-PIB 

binding as well as levels of Aβ measured in autopsy AD 

brain tissue [22-25]. 18F-fl orbetapir PET imaging has also 

been shown to correlate with the presence of Aβ amyloid 

at autopsy [26], as well as 18F-fl utemetamol PET imaging 

to amyloid measured in cortical biopsies [27].

A still unknown factor is the relationship between 

fi brillar Aβ (plaques) and soluble Aβ oligomers. Presently 

there is no information on how the smaller soluble Aβ 

oligomers, which are known for triggering synaptic dys-

function [28-30], can be visualized in vivo in man with 

the presently available Aβ tracers. It is therefore a 

challenge to try to develop PET tracers that can visualize 

these smaller forms of Aβ in the brain, although the 

probably lower content of oligomers in AD brains 

compared with fi brillar Aβ might be a limiting factor. Th e 

soluble Aβ oligomers are important since they probably 

can induce and interfere with the neurotransmission in 

the brain [30,31].

Longitudinal PET amyloid studies in Alzheimer’s 

disease patients

Th ere are still few longitudinal studies of Aβ PET imaging 

in AD patients. Th ese studies are important to under-

stand the rate of accumulation of amyloid in the brain 

and are important for evaluation of intervention in anti-

amyloid drugs. A 2-year follow-up study with 11C-PIB in 

AD patients revealed at group level consistent stable 

fi brillar Aβ levels in the brain [32]. Two additional 1-year 

and 2-year follow-up studies confi rmed these observa-

tions [33,34] as well as a recent 5-year follow-up PET 

study of the fi rst imaged PIB PET cohort [35]. In the 

latter study it was evident at the individual level that 

increased, stable and decreased PIB retention were 

observed and the disease progression was refl ected in 

signifi cant decline in cerebral regional cerebral glucose 

metabolism (rCMRglc) and cognition [35]. In a recent 

20-month follow-up study, Villemagne and colleagues 

reported a 5.7% increase in fi brillar Aβ in AD patients 

[36]. Th e longitudinal imaging studies mainly support the 

Table 1. Pathological and functional biomarkers in 

Alzheimer’s disease

Pathological Alzheimer’s disease biomarkers

Positron emission tomography

 Fibrillar amyloid beta (11C-Pittsburgh Compound B, 18F-fl utemetamol, 

 18F-fl orbetapir, and 18F-fl orbetaben)

 Tau (18F-FDDNP)

 Microglia (11C-PK11195, 11C-DA1106)

 Astrocytes (11C-D-deprenyl)

Magnetic resonance imaging (atrophy, hippocampal volume, cortical thickness)

Cerebrospinal fl uid (amyloid beta 1–42, tau, p-tau)

Functional Alzheimer’s disease biomarkers

Positron emission tomography

 Cerebral glucose metabolism (18F-FDG)

 Neurotransmitter activity (for example, 11C-CFT, 11C-PMP)

 Neuroreceptors (for example, 11C-raclopride, 18F-alanserine, 11C-nicotine)

Functional magnetic resonance imaging, spectroscopy 

Single-photon emission computed tomography (cerebral blood fl ow)
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assumption that the Aβ levels in the AD brain reach a 

maximal level at the early clinical stage of the disease, 

although both increase and decline in later stages of the 

disease cannot be excluded [12,37,38].

Amyloid imaging in mild cognitive impairment 

patients
11C-PIB PET studies in mild cognitive impairment (MCI) 

patients have revealed a bimodal distribution. Both high 

(PIB+) and low (PIB–) retention of the PET tracer has 

been demonstrated [39,40]. PIB+ MCI patients seem to 

have a greater risk to convert to AD after clinical follow-

up compared with PIB– MCI patients [39,41,42]. Figure 1 

illustrates high 11C-PIB retention in a MCI patient (PIB+) 

who later converted to AD in comparison with a non-

converting MCI patient (PIB–). PIB+ MCI patients show 

comparably high11C-PIB retention to AD patients 

(Figure 1). We recently observed a signifi cant increase in 

brain 11C-PIB retention in early MCI patients when re-

scanned after 3 years [35]. Th e MCI patients also showed 

a decrease in rCMRglc while they remained stable in 

cognitive function at follow-up [35]. Jack and colleagues 

[34] and Villemagne and colleagues [36] have also 

reported annual changes in 11C-PIB retention. Th ese 

fi ndings support a continuous increase in Aβ load in the 

early stage of prodromal AD [35] (Figure 2).

Amyloid imaging in older subjects without 

cognitive impairment

High Aβ has been measured in older cognitive normal 

controls (for a review see [43]). Th e reported percentage 

of positive Aβ PET scans varies from 10 to 50% between 

diff erent cohorts of studied older people without cog ni-

tive impairment [44,45]. A possible explanation for 

variation in percentage of Aβ PET-positive cognitive 

normal subjects could be age but also genetic background 

(APOE genotype). Aβ alone most probably does not 

account for the decline in memory in older people. 

Further longitudinal studies are needed to investigate to 

what extent these Aβ-positive older people with normal 

cognition will later convert to AD [46]. In a recent 

longitudinal study of 159 older subjects with normal 

cognition and PIB+, PET showed a greater risk for 

developing symptomatic AD within 2 to 5  years 

compared with PIB– subjects [47].

Relationship between brain amyloid and 

cerebrospinal fl uid biomarkers

Th ere is a strong inverse correlation between accumu-

lations of fi brillar Aβ in the brain as measured by 11C-PIB 

and levels of Aβ
1–42 

in cerebrospinal fl uid (CSF)
 
[39,48-55]. 

An inverse correlation between 11C-PIB retention and 

CSF Aβ
1–42

 has been demonstrated in prodromal AD 

(MCI) earlier than changes in functional parameters 

(cerebral glucose metabolism, cognition) [54] (Figure 2). 

Figure 3 illustrates the inverse relationship between Aβ in 

the brain and the CSF as analyzed with statistical para-

metric mapping cluster analysis. A positive relation ship 

has also been observed between 11C-PIB retention and 

levels of CSF tau and p-tau [39,50,51,54]. Which of the 

biomarkers are most sensitive to detect the earliest 

pathological signs of the disease is still unclear.

Some data suggest that 11C-PIB PET imaging detects 

amyloid pathology prior to CSF biomarkers [39,49,54]. 

Soluble Aβ oligomers might be the most pathogenic in 

AD. An interesting observation is therefore that AD 

patients with the APP arctic mutation show no fi brillar 

Aβ in the brain (PIB-negative) but a reduction of Aβ
42

 in 

CSF as well as a reduction in cerebral glucose 

metabolisms by PET [56].

Imaging of infl ammatory processes in Alzheimer’s 

disease brain

Infl ammatory processes have been suggested to cause the 

pathological processes of AD [57,58]. Amyloid has been 

observed to mobilize and activate microglia [59]. 

Activated microglia are found in autopsy brain tissue at 

Figure 1. Pittsburgh Compound B retention in the brain. 

Pittsburgh Compound B (11C-PIB) retention in the brain of a healthy 

control (HC), an Alzheimer patient (AD), patients with mild cognitive 

impairment (MCI) who later at clinical follow-up converted to AD, 

and patients with MCI who did not later convert to AD. PIB+, high 

Pittsburgh Compound B retention; PIB–, low Pittsburgh Compound 

B retention. Red, high 11C-PIB retention; yellow, medium 11C-PIB 

retention; blue, low 11C-PIB retention.
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sites of aggregated Aβ deposition of AD patients. Th e 

peripheral benzodiazepine receptor PET tracer 11C-(R)-

PK11195 has been used for measuring the transition of 

microglia from a resting state to an activated state in the 

brain. An increase in 11C-(R)-PK11195 binding was 

described by Cagnin and colleagues in the 

temporoparietal, cingulated and ento rhinal cortices of 

AD patients as a sign for strong micro glia activation 

compared with controls [60]. Edison and colleagues 

demonstrated high cortical 11C-(R)-PK11195 binding 

with reciprocal negative correlation with cogni tive 

performance in AD patients [61]. In some other studies, a 

lower level of microglia activation was observed in mild 

AD and MCI [62,63]. 11C-DAA-1106 is a new peripheral 

benzodiazepine PET tracer that has shown increased 

binding in several brain regions including the frontal, 

parietal, temporal cortices and striatum of AD patients 

compared with age-matched controls [64].

Activated astrocytes participate in the infl ammatory 

processes occurring around the Aβ plaques. An increased 

number of astrocytes have been measured in autopsy 

brain tissue from AD patients, especially those with the 

Swedish APP mutation [65]. A positive correlation has 

been observed between 3H-PIB binding and GFAP 

immunoreactivity in autopsy AD brain tissue [25]. It is 

assumed that synaptic activity might be coupled to 

utilization of energy through an interaction between 

astrocytes and neurons where the astrocytes take up 

glucose and release lactate to neurons [66].

N-[11C-methyl]-l-deuterodeprenyl (11C-DED) has been 

shown to irreversibly bind to the enzyme monoamino-

oxidase B expressed in reactive astrocytes. 11C-DED has 

therefore been tested as a PET ligand for measurement of 

activated astrocytes. Increased 11C-DED binding was demon-

strated in the brain of patients with Creutzfeldt–Jacob 

disease [67]. We have recently observed by PET an 

increased 11C-DED binding in the cortical and subcortical 

brain regions of MCI patients compared with AD patients 

and controls [68]. Th ese observations suggest that 

astrocytosis might be a very early event in the time course 

of pathological processes in AD (Figure 2). Further studies 

are needed to explore the relationship between Aβ and 

infl ammatory processes in the early stages of AD.

Imaging of functional changes in Alzheimer’s 

disease brain

Brain glucose metabolism

2-[18F]-fl uoro-2-deoxy-d-glucose (18F-FDG) has been 

widely used both in research and clinically for measure-

ment of regional changes in rCMRglc in AD [10]. A 

reduction of rCMRglc is often observed in the parietal, 

temporal, frontal and posterior cingulate cortices. Th e 

decline in rCMRglc is more regional specifi c compared 

with the increased 11C-PIB retention in large areas of the 

AD brain [11,32]. Th e hypometabolism is often more 

severe in early-onset AD compared with late-onset AD, 

while no diff erence in regional 11C-PIB retention has been 

observed between early-onset and late-onset AD [69]. 
11C-PIB PET seems to detect prodromal AD at an earlier 

disease stage and better separates between MCI subtypes 

(amnestic versus nonamnestic) than 18F-FDG [39,58,70]. 

Th e decline in rCMRglc follows, in contrast to PIB, the 

clinical progression of AD and shows a strong correlation 

with changes in cognition [32,35,58,70]. Figure  3 illus-

trates the correlation between rCMRglc and episodic 

memory (Rey Auditory Verbal Learning) and between 
11C-PIB and episodic memory (Rey Auditory Verbal 

Learning) as analyzed with statistical parametric map-

ping analysis. Th e 18F-FDG uptake shows more brain 

regional specifi c clusters compared with 11C-PIB [54].

Figure 2. Schematic drawing of changes in pathological and functional imaging markers during progression of Alzheimer’s disease. 

Aβ, amyloid beta; AD, Alzheimer’s disease; CSF, cerebrospinal fl uid; MCI, mild cognitive impairment.
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Neurotransmitter and neuroreceptor imaging

Several neurotransmitters are impaired in AD, especially 

the cholinergic system but also the dopaminergic and 

serotonergic neurotransmitter. Several PET tracers have 

been developed and tested for measuring the diff erent 

neurotransmitters, enzymes and various subtypes of 

receptors in AD patients [10]. PET tracers are available 

for studying dopaminergic, serotonergic and cholinergic 

systems [12] (Table 1). Th e cholinergic neurotransmission 

has so far been the focus for clinical AD therapy. It is 

therefore worth mentioning that decreases in nicotinic 

receptors have been demonstrated by PET in AD patients 

using 11C-nicotine [71] and 18F-fl uoro-A-85380 (α4 

nicotinic receptors) [72]. Th e extent of reduction in 
11C-nicotine binding correlated with the reduction in 

level of attention of the AD patients [71]. Presently there 

is a great interest to develop selective PET tracers for 

imaging of the α7 nicotinic receptors in the brain since 

these receptors interact with Aβ and might therefore be a 

new target for AD therapy [73].

Imaging biomarkers and drug development

Recent progress in molecular imaging and biomarkers 

indicates that subtle pathological changes indicative for 

AD disease might be detected decades prior to clinical 

diagnosis of AD. Diff erences in the time course are 

observed between pathological and functional AD imag-

ing biomarkers (Figure 2). PET imaging allows measure-

ment of pathological processes such as depo sition of 

fi brillar Aβ plaques, levels of activated microglia and 

astrocytosis. Th ere is a need for further exploration of 

PET tracers visualizing infl ammatory processes that 

might occur at very early disease states (Figure 2). Simi-

larly, there is a great need for PET tracers visualizing the 

accumulation of Aβ oligomers in diff erent stages of AD 

(Figure  2). Preclinical data for the new promising PET 

ligand THK 523 for in vivo tau imaging have recently 

been presented [74]. Additional PET studies are needed 

to predict with more accuracy the time course for 

changes in neurotransmitter function including the nico-

tinic receptors. Brain atrophy changes (magnetic reso-

nance imaging) correlate closely with cognitive decline 

and disease progression but less with amyloid load in the 

brain [14,20,75].

Th e rapid development of molecular imaging will be 

important not only for early diagnostic biomarkers and 

early detection of AD [7-9,46] but also to select patients 

for certain drug therapies and to identify disease-

modifying therapies and testing in clinical trials (Table 2). 

PET imaging bio markers could thereby play an important 

role in identifying patients with elevated risk of 

developing AD. In addition, fi brillar Aβ imaging could 

(together with CSF Aβ
42

) serve as an inclusion criterion 

as well as a primary outcome in phase 2 and a secondary 

outcome in phase 3 drug trials. Measurement of rCMRglc 

and magnetic resonance imaging atrophy changes are 

probably most useful for predicting the clinical outcomes 

of drug therapy.

Th e multi-tracer PET concept off ers unique oppor-

tunities in drug trials to study pathological as well as 

functional processes and to relate these processes in the 

brain to CSF biomarkers and cognitive outcomes 

(Figure 4). Th ere is now an increased interest to introduce 

diff erent biomarkers into clinical trials in AD patients 

[76], which will be important for all drug candidates in 

the pipeline for AD trials [77]. Long-term treatment with 

cholinesterase inhibitors in AD patients has shown 

signifi cant correlation between the degree of inhibition 

Figure 3. Positron emission tomography measurements, cerebrospinal fl uid amyloid beta 1–42 and episodic memory scores. Statistical 

parametric mapping analysis showing clusters with signifi cant covariance between positron emission tomography measurements versus levels 

of cerebrospinal fl uid (CSF) amyloid beta 1–42 (Aβ
1–42

) and episodic memory scores measured by means of Rey Auditory Verbal Learning (RAVLtot) 

tests, using data from Alzheimer’s disease and mild cognitive impairment patients, at threshold P <0.001, uncorrected for multiple comparisons. 

(a) Areas with signifi cant covariance between Pittsburgh Compound B (11C-PIB) retention and concentrations of Aβ
1–42

 in CSF. (b) Clusters with 

signifi cant covariance between 11C-PIB retention and scores in RAVLtot tests. (c) Signifi cant clusters of covariance between regional cerebral glucose 

metabolism (rCMRglc) and scores in RAVLtot tests. Data from [54].
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of acetylcholinesterase in the brain, the number of 

nicotinic receptors, rCMRglc and clinical outcome of 

treatment measured as attentional test performances 

[78-82]. To evaluate the eff ect of new disease-modifying 

thera peutics, imag ing of fi brillar amyloid, activated 

microglia, astrocytosis, tau in addition to rCMRglc and 

structural brain changes should be applied to determine 

whether anti-amyloid strategies may clear the amyloid 

plaques from the brain but also slow down disease 

progression. A few PET studies in AD patients have 

shown reduction of brain Aβ measured by 11C-PIB 

following anti-amyloid treatment [81,83,84] but the 

disease-modifying eff ects still have to be proven.
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