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REVIEW
Interpreting Alzheimer’s disease clinical trials in
light of the effects on amyloid-β
Jeremy H Toyn and Michael K Ahlijanian*
Abstract

The failure of several potential Alzheimer’s disease therapeutics in mid- to late-stage clinical development has
provoked significant discussion regarding the validity of the amyloid hypothesis. In this review, we propose a
minimum criterion of 25% for amyloid-β (Aβ) lowering to achieve clinically meaningful slowing of disease
progression. This criterion is based on genetic, risk factor, clinical and preclinical studies. We then compare this
minimum criterion with the degree of Aβ lowering produced by the potential therapies that have failed in clinical
trials. If the proposed minimum Aβ lowering criterion is used, then the amyloid hypothesis has yet to be adequately
tested in the clinic. Therefore, we believe that the amyloid hypothesis remains valid and remains to be confirmed
or refuted in future clinical trials.
Introduction and scope
Alzheimer’s disease (AD) is a devastating and costly dis-
ease accounting for 50 to 80% of senile dementia cases.
Worldwide, over 35 million people have dementia and
the number is projected to double in the next 20 years
[1]. Current treatments for symptoms have marginal
benefits, and none treat the disease itself. A key hallmark
of AD brain pathology is the accumulation of amyloid
plaques. These consist largely of amyloid-β (Aβ) peptide,
which is formed through proteolytic cleavage of amyloid
precursor protein (APP) by two proteases: β-site APP-
cleaving enzyme (BACE) and γ-secretase. Rare muta-
tions in APP and the catalytic subunit of γ-secretase,
presenilin, cause inherited forms of AD (familial AD
(FAD)) with accelerated age of onset. In addition there
are genetic risk factors, such as apoE4 and the APP
Iceland mutant, that respectively increase or decrease
AD risk. These genetic polymorphisms are all associated
with changes in the production of Aβ, or changes in the
relative amount of the more neurotoxic 42 amino acid
form of Aβ, ‘Aβ42’ [2]. Thus, genetic and pathological
evidence has converged on the amyloid hypothesis of
AD, proposing that accumulation of Aβ is neurotoxic,
leading to neuron loss, dementia and death [3,4]. Ac-
cordingly, major approaches to AD drug development
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over the past two decades have focused on lowering
Aβ - for example, by inhibition of BACE or γ-secretase,
or by the use of therapeutic antibodies to neutralize or
enhance clearance of Aβ. Unfortunately, several clinical
trials based on these approaches have been unsuccessful,
raising the question of whether failure was due to insuf-
ficient target engagement, trial design, or the amyloid
hypothesis. Here we address the target engagement
question: what is the minimum extent of Aβ lowering
sufficient for significant cognitive benefit in AD patients?
And has this level of target engagement yet been
achieved in patients for sufficient trial duration?

Evidence in humans for the effect of changes in
amyloid-β production
Human genetic evidence suggests that modest changes
in Aβ production are associated with a significant im-
pact on AD. FAD mutants in which the APP gene is du-
plicated increase the gene dosage of APP by 50%,
implying increased Aβ production [5]. This suggests that
a 33% decrease of Aβ production in affected individuals
would result in Aβ production rates equivalent to that of
normal healthy individuals. A similar situation of 50%
increased APP gene dosage due to trisomy 21 is associ-
ated with >50% increase in APP mRNA expression, and
may contribute to early onset AD in Down’s syndrome
[6]. In sporadic (late onset) AD, a 30% decreased clear-
ance of Aβ was reported in AD subjects, based on data
using a heavy isotope labeling method [7]. In contrast to
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the FAD mutants, one rare APP mutant was associated
with decreased incidence of AD [8]. In cell cultures
overexpressing this mutant, BACE cleavage of the mu-
tant APP was decreased by 50%, thereby decreasing Aβ
production. This result implies that Aβ production in
heterozygous individuals would be decreased by about
25%, although direct measurements of Aβ production in
these individuals have not been reported. Thus, accumu-
lating evidence suggests that relatively modest changes
in Aβ, perhaps as little as 25% change over a sufficient
period of time, can have a significant impact on AD.
In addition to the association of decreased Aβ levels

with decreased disease risk, increased production of
Aβ42, relative to other Aβ peptides, is associated with
earlier age of disease onset. Studies of Aβ production in
cell cultures expressing presenilin FAD mutants showed
that the relative amount of Aβ42, measured as an Aβ42/
Aβ40 ratio, was inversely correlated with age of onset
[9,10]. To a first approximation, an earlier age of onset
by 1 year was associated with a 1% increased Aβ42/
Aβ40 production ratio, as measured in cell cultures. An-
other study reported an FAD mutant in which Aβ40 was
selectively decreased without change in Aβ42, thus fur-
ther emphasizing the role of the ratio [11]. Aβ42/Aβ40
production ratios are more challenging to measure
in vivo, and require methods that circumvent the con-
founding effects of Aβ aggregation and degradation in
the brain. The recent stable isotope labeling study by
Potter et al. [12] reported that presenilin FAD subjects
had a 24% increased Aβ42/Aβ40 production ratio, and
selectively increased Aβ42 clearance in subjects with
amyloid deposits. This is consistent with the amyloid hy-
pothesis; increased Aβ42 production leads to increased
aggregation in the brain, thereby decreasing the amount
of Aβ42 transported into the cerebrospinal fluid (CSF).
This results in the counterintuitive situation in which in-
creased Aβ42 levels in brain lead to decreased Aβ42 in
CSF. In an earlier report using the stable isotope labeling
method, sporadic AD patients (who were not FAD car-
riers) had decreased clearance in Aβ42 and Aβ40 of 30%
and 26%, respectively, but no difference in production
rates relative to age-matched controls [7]. Clearly, more
studies are required to understand differences in Aβ
dynamics between different genotypes and stages of
disease, but thus far it appears that increases in either
total Aβ or Aβ42 production can accelerate disease
onset. In contrast to presenilin FAD mutants, APP
FAD mutants were reported to increase Aβ38 produc-
tion, in addition to Aβ42, relative to other Aβ pep-
tides, and in vitro results raised the possibility that
Aβ38 may also contribute to aggregation and neuro-
toxicity [13]. Thus, small changes, most likely less
than 25%, in the ratios of Aβ peptides are associated
with profound changes in AD risk and age of onset.
The human evidence described in the above section is
summarized in Table 1.

Evidence from Alzheimer's disease mouse models
for the effect of changes in amyloid-β levels on
cognition
APP transgenic (TgAPP) mice are engineered to overex-
press human APP, and in most cases exhibit Aβ-
dependent pathology and cognitive deficits. Multiple
genetic and pharmacological methods have been used to
explore Aβ changes in these models. The soluble pool of
Aβ responds rapidly to changes in Aβ production,
whereas amyloid plaque-associated Aβ accumulates
slowly with age, and does not respond acutely to changes
in Aβ production. Therefore, we first considered studies
that reported measurements of soluble Aβ-lowering and
associated cognitive outcomes in TgAPP mice (Table 2).
BACE1 knock out (KO) mice exhibited a range of Aβ

lowering from 12% for heterozygous to >90% for homo-
zygous animals, with cognitive benefits in multiple types
of cognitive assays [14-20]. In contrast, ablation of γ-
secretase caused developmental abnormal or lethal phe-
notypes, and conditional KO (cKO) alleles of presenilin
or nicastrin caused neurodegeneration and memory defi-
cits in wild-type mice [21-24]. Thus, it is hardly surpris-
ing that presenilin cKO did not consistently show
cognitive benefits in TgAPP mice despite Aβ lowering in
the 55 to 75% range [25,26]. For γ-secretase ablation, it
is possible that any benefit of Aβ lowering is confounded
by deficits caused by loss of other functions of γ-
secretase, such as Notch receptor activation. In addition,
the restriction of the presenilin cKO allele to the fore-
brain may not have targeted Aβ lowering to the optimal
anatomical location for benefit in TgAPP. A repressible
TgAPP allele has been used to control Aβ synthesis in
TgAPP mice [27]. In this study, aged plaque-bearing
mice were fed doxycycline to repress TgAPP expression,
implying a corresponding decrease in newly synthesized
Aβ. Cognitive improvement was detected after 7 days,
and yet no detectable lowering of transgene-derived sol-
uble Aβ42 was apparent, presumably due to equilibrium
of soluble Aβ42 with plaque Aβ42. Aβ can also be de-
creased by cystatin C KO, which increases Aβ clearance
via increased cathepsin B protease activity. Cognitive
benefits in cystatin KO mice were associated with
Aβ lowering of about 40% in young plaque-free TgAPP
mice [28].
Improved cognition in TgAPP mice chronically dosed

with BACE inhibitors (BACEis) GRL-8234, TAK-070 and
trihydroxychalcone was associated with amyloid plaque
lowering in the 20 to 60% range, but no evidence of de-
creased Aβ production was reported [29-31]. TgAPP
mice given single doses of the γ-secretase inhibitors
(GSIs) DAPT, begacestat, semagacestat, and avagacestat
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Table 1 Alzheimer’s disease and human Aβ levels

Disease state Affect on Aβ Type of study Reference

APP gene duplication 50%↑ production inferred Gene copy number in patients [5]

Trisomy 21 50%↑ production inferred mRNA levels in patients [6]

Protective APP allele 25%↓ production Cell culture [8]

Presenilin FAD Aβ42/Aβ40 1%↑ per year earlier age of onset Cell culture [9,10]

Presenilin FAD Aβ42/Aβ40 24%↑ clearance Patient CSF samples [12]

Sporadic AD Aβ42 30%↓ clearance; Aβ42 26%↓ clearance Patient CSF samples [7]

APP FAD Aβ42↑ and Aβ38↑ production Cell culture [13]

Aβ, amyloid-β; AD, Alzheimer’s disease; APP, amyloid precursor protein; CSF, cerebrospinal fluid; FAD, familial Alzheimer’s disease.
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showed cognitive improvements with Aβ lowering in the
range 0 to 35% [32-36]. The effect of a single dose is
noteworthy because it implies an acute role of newly
synthesized Aβ in cognitive impairment. In the study by
Mitani et al. [35], a 1 mg/kg single dose of semagacestat
or avagacestat improved Y maze performance, although
decreased Aβ was only detectable at higher doses. How-
ever, 8-day repeat dosing at 1 mg/kg did not improve Y
maze performance in TgAPP mice, and actually impaired
Y maze performance in wild-type mice. Thus, like the
presenilin cKO allele, it appears any benefit of Aβ lower-
ing in TgAPP mice may have been confounded by other
deficits resulting from γ-secretase inhibition, in this case
Table 2 Aβ-lowering cognitive benefit in TgAPP mice

Aβ-lowering method Brain Aβ lowering (%) Observed fun

BACE1−/− KO >90% Contextual fea
recognition

BACE+/− KO 12% in young mice Contextual fea

Presenilin conditional
forebrain KO

75% No benefit (no
mice)

Presenilin conditional
forebrain KO

55% in young mice Contextual fea
young but not

TgAPP conditional
allele

≥70% new Aβ; no effect on
steady-state Aβ42 levels

Two trial Y ma

Cystatin C KO 40% (Aβ); 60% (Aβ42) in young
mice

Morris water m

GRL-8234 (BACEi) 35-50% plaque after 7 months Morris water m

TAK-070 (BACEi) 20% plaque after 7 weeks Y-maze, Morris

Trihydroxychalcone
(BACEi)

50-60% plaque after 106 days Morris water m

DAPT (GSI) single dose 25% at 8 hours Contextual fea

DAPT (GSI) repeat dose 35% after 4 days Morris water m

Begacestat (GSI) single
dose

25-35% at 4 hours Contextual fea

Semagacestat/
LY450139 (GSI)

No change 1 mg/kg; 25-30%
10 mg/kg

Y maze benefi
10 mg/kg or 8

Avagacestat/ BMS-
708163 (GSI)

No change 1 mg/kg; 25-30%
10 mg/kg

Y maze benefi
10 mg/kg or 8

Aβ, amyloid-β; BACE, β-site APP-cleaving enzyme; BACEi, β-site APP-cleaving enzym
proposed due to accumulation of APP β-CTF fragment
[35].
Selective lowering of Aβ42 is of therapeutic interest

because of increased Aβ42 in FAD mutants, the evidence
that Aβ42 is the earliest deposited species [37], and the
cognitive disruption caused by Aβ42 aggregates in ani-
mal models [38,39]. Furthermore, in vitro studies have
shown that Aβ42 aggregation is inhibited by Aβ40
[40-42], and also by Aβ37 and Aβ38 [43], suggesting that
the shorter peptides are capable of interfering with the
amyloid cascade. A variety of genetic and pharmaco-
logical methods have been used to selectively alter Aβ42
levels in vivo. An increased Aβ42/Aβ40 ratio enhanced
ctional benefits Mouse
strain

Reference

r conditioning, Morris water maze, social Tg2576;
5xFAD

[14-16]

r conditioning, conditioned taste aversion PDAPP;
5xFAD

[17-20]

vel object recognition in 3- to 6-month-old APP [V717I] [25]

r conditioning and Morris water maze in
old mice

APP J20 [26]

ze; plus water maze; radial arm water maze Repressible
TgAPP

[27]

aze APP J20 [28]

aze Tg2576 [31]

water maze, novel object recognition Tg2576 [29]

aze APP-PS1 [28]

r conditioning Tg2576 [32]

aze Ts65Dn [34]

r conditioning Tg2576 [33]

t at 1 mg/kg after single dose; no benefit at
-day repeat dosing

Tg2576 [35]

t at 1 mg/kg after single dose; no benefit at
-day repeat dosing

Tg2576 [35]

e inhibitor; GSI, γ-secretase inhibitor; KO, knock out; TgAPP, APP transgenic.
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aggregation and neurotoxicity in vitro and caused mem-
ory deficits after a single intraventricular injection in
wild-type mice [44]. A presenilin mutant that selectively
lowered Aβ40 exacerbated plaque deposition in TgAPP
mice, implicating the Aβ42/Aβ40 ratio per se [45]. In an-
other in vivo approach, novel Tg-Aβ42 and Tg-Aβ40
transgenes were used for selective expression of Aβ42 or
Aβ40, respectively. Selective expression of Aβ40 was
shown to interfere with Aβ plaque accumulation in Tg-
Aβ42 and TgAPP mice [46]. Remarkably, however, Tg-
Aβ42 and Tg-Aβ40 mice exhibited no cognitive defects
in a range of tests, indicating that overexpression of Aβ
was insufficient for neurotoxicity in this model [47]. As
mentioned above, a cystatin C KO in TgAPP mice ame-
liorated cognition associated with 40% overall lowering
of Aβ peptides; however, this was also in the context of
33% relative lowering of Aβ42 [28].
γ-Secretase modulators (GSMs) include a variety of

small molecules that target γ-secretase, causing de-
creased Aβ42 and increased production of one or more
shorter peptides such as Aβ37, −38, or −39 [48]. Thus,
GSMs have an essentially opposite effect to FAD mu-
tants. The GSM EVP-0015962 improved cognition in
TgAPP mice after a single dose that caused a 50% de-
crease in Aβ42 [49]. CHF5074 improved cognition after
chronic dosing in TgAPP mice with no discernable Aβ42
lowering, but it seems probable that the cognitive effect
was not related to the GSM activity of this compound,
which is of very low potency [50-53]. TgAPP mice given
single doses or 8-day repeat doses of GSM-2 at ≥0.1 mg/
kg showed improved Y maze performance [35], although
Aβ42 lowering, of 20% and 30%, was detected only at
the higher doses of 1 and 3 mg/kg, respectively [35,36].
Table 3 γ-Secretase modulators and selective Aβ42-lowering
Selective Aβ42-
lowering method

Brain Aβ42 lowering
(%)

Observed cognitive or
Tg mouse

ICV injection of
preaggregated Aβ42/
Aβ40

Aβ42/40 3:7 ratio; 1:9
ratio inactive

Passive avoidance and co

BRI-Aβ40 and BRI-
Aβ42 transgenes

50-400% increased Aβ40
(decreased 42/total ratio)

60-90% decreased plaqu
mice exhibited no Aβ-de

EVP-0015962 50% after single 30 mpk
dose

Contextual fear condition
50 weeks at 60 mpk/day

CHF5074 No significant change
(4–9 month treatment)

Contextual memory, 50-7
astrogliosis, synaptophys

GSM-2 0-30% at 0.1-3 mpk,
respectively

Y maze improvements at
5.5 months

GSM-2 50-60% nascent Aβ
2 hours after 10 mpk

Y maze and plaque path

JNJ40418677 50% max lowering 30
mpk single dose

Up to 96% decreased pla
7 months at 120 mpk/da

Compound 4 40% decrease 100 mpk
single dose

48-76% decrease of plaq
day

Aβ, amyloid-β; ICV, intracerebroventricular; mpk, mg/kg; Tg, transgenic.
The GSMs JNJ40418677 and ‘compound 4’ exhibited
Aβ42 lowering activity in the 40 to 50% range, but cog-
nitive effects were not reported. However, long term
dosing of these compounds did decrease Aβ plaque ac-
cumulation [54,55]. Thus, accumulating evidence sug-
gests that decreased Aβ42 relative to shorter Aβ
production affects the amyloid cascade and improves
cognitive performance in TgAPP models, as summarized
in Table 3.
The interpretation of the evidence linking Aβ lowering

and cognitive benefits in animal models should take sev-
eral factors into account, including the mechanism by
which Aβ lowering was achieved, and the possibility of
confounding toxicity, as well as the observed change in
Aβ levels. For example, sustained Aβ lowering is likely
to be more impactful than transient Aβ lowering. For
genetic methods of Aβ ablation, measurement of soluble
Aβ levels at a single time point represents the overall
sustained level of Aβ lowering. For small molecules,
however, Aβ lowering data often refer to a single optimal
time point after dosing, which can be several-fold
greater than the average extent of Aβ lowering across
the dosing interval. In addition, the form of Aβ mea-
sured should be considered. Many studies, including
immunization approaches, have reported cognitive bene-
fits associated with decreased plaque Aβ. Decreased
plaque Aβ is a downstream endpoint, and is not a direct
readout for decreased Aβ production or neurotoxic
forms of Aβ. Nevertheless, such studies give further evi-
dence of the link between the amyloid cascade and cog-
nition [56].
Thus, taking into consideration a wide range of studies

in TgAPP mice and human genetics, relatively modest
benefit

pathological benefits in deficient Mouse strain Reference

ntextual fear conditioning Wild type;
intraventricular Aβ
administration

[44]

e; improved survival; however, these
pendent cognitive phenotypes

Tg2576 and Tg-Aβ40 [46,47]

ing, gliosis 75% plaque load, after Tg2576 [49]

5% decreased plaque burden,
in levels, neurogenesis

Tg2576 [50-53]

0.1-3 mpk in mice aged Tg2576 [35]

ology in mice aged 10–18 months Tg2576 [36]

que area and number after
y

Tg2576 [55]

ue Aβ after 7 months at 50 mpk/ Tg2576 [54]
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decreases in Aβ, of about 25%, are associated with cogni-
tive benefits (Tables 2 and 3). Therefore, we propose that
sustained Aβ lowering of 25% using any method toler-
ated for a sufficient period of time in patients represents
a reasonable minimal objective. While this criterion is
proposed as a minimal objective, an optimal therapeutic
will provide the flexibility to probe a range of Aβ-
lowering activity, including nearly complete lowering, in
order to understand the relationship between Aβ lower-
ing and efficacy. Nevertheless, greater than 25% may not
be achievable by some compounds, and consequently
setting the bar too high could result in lost opportun-
ities. Lowering of Aβ by approximately 25% therefore
sets a reasonable starting point for the minimum level of
pharmacodynamic effect to justify efficacy trials in AD
patients.

Demonstration of amyloid-β lowering in recent
clinical trials
If the preceding arguments are valid, then a pressing
question is whether the recent, late stage clinical studies
achieved the 25% Aβ lowering criterion. Before this
question can be addressed, however, two antecedent
questions require clarification; at what stage of AD
might 25% Aβ reduction produce efficacy, and what
form of Aβ should be targeted for 25% reduction.
What is the relationship between the extent of Aβ

lowering required for efficacy and disease stage? For ex-
ample, does it escalate with disease progression - that is,
is the requirement for Aβ reduction lower if intervention
is earlier (predementia/presymptomatic), and greater if
intervention is later in disease (mild to moderate)? Alter-
natively, is there some degree of Aβ lowering that will
produce efficacy regardless of stage of intervention?
Finally, is there a point in the disease process that is un-
responsive to Aβ-directed therapies (for example, mod-
erate to severe)? While clear answers to these questions
will not be forthcoming until an efficacious agent is
identified, there seems to be consensus in the field that
earlier intervention is desirable [4,57]. This consensus is
based on the long latency of measurable pathologic
changes (changes in CSF Aβ and tau, plaque and tangle
development, volumetric magnetic resonance imaging
(MRI)) and the relatively late onset of cognitive symp-
toms [58-64]. Based on the hypothesis that earlier
intervention is better, several clinical efficacy studies tar-
geting pre-symptomatic AD patients are either underway
or planned (for example, [65,66]). For the purposes of
this review, we propose the minimum criterion of 25%
Aβ lowering for clinical trials targeting early stages of
the disease, namely predementia (mild cognitive impair-
ment with biomarker evidence consistent with AD) and
mild AD. The combination of cognitive symptoms with
biomarkers such as CSF Aβ42, tau, volumetric MRI and
amyloid positron emission tomography (PET) suggest
that these are the earliest disease stages for which a diag-
nosis of AD or likely progression to AD can currently be
confidently assigned (for example, [59,67,68]). However,
even mild AD may be too late for initiating Aβ-lowering
therapies given the latency between biomarker positivity
and symptom onset. Therefore, the 25% criterion could
also be considered when designing trials for presymp-
tomatic AD.
Which form of Aβ should be targeted for 25% reduc-

tion in efficacy trials? The amyloid hypothesis currently
states that soluble Aβ is the species most deleterious to
neuronal viability and synaptic function. While the pre-
cise molecular identity of the most toxic Aβ species is
debatable (for example, [69]), the number of independ-
ently reproduced reports implicating soluble Aβ as dis-
ruptive to normal function strongly suggests that this
species plays a key role in the cognitive decline observed
in AD.
If soluble Aβ is the key culprit in cognitive impair-

ment, how can sponsors assess potential reduction of
this species in humans in clinical trials? Currently the
best reflection of soluble brain Aβ is CSF Aβ [70]. CSF
Aβ is used to aid in the diagnosis of AD [71-73] and has
been used as a target engagement biomarker by sponsors
developing therapies that are intended to lower Aβ
[74,75]. The latter studies are typically supported by
substantial preclinical data sets demonstrating an under-
standing of the relationship between brain and CSF Aβ-
lowering produced by an Aβ-targeting compound in
more than one species. These preclinical studies have
demonstrated close correspondence between brain and
CSF lowering of Aβ produced by GSIs [33,76-79], GSMs
[70,79,80] and BACEis [70,81-83] confirming that CSF
Aβ can reflect brain Aβ. These preclinical data sets are
subsequently used as the basis for pharmacokinetic/
pharmacodynamic (PK/PD) modeling to aid in dose se-
lection and for determining the time points to sample
CSF in human studies. For example, the GSI avagacestat
produced reductions in rat brain Aβ that were reflected
by comparable reductions in CSF after acute administra-
tion [78]. Modeling of these data accurately predicted
the human PK/PD relationship for reductions in normal
healthy volunteer (NHV) CSF [78,84,85]. Furthermore
these PK/PD relationships for Aβ lowering did not differ
significantly between NHVs and AD patients [86]. Add-
itional preclinical data sets followed by PK/PD modeling
and data collection in humans have been reported for
other classes of Aβ-lowering drugs, including GSMs
(BMS, unpublished) and BACEis [82,83]. Thus, for all
synthesis-inhibitor mechanisms studied in this way,
there is substantial correlation between lowering of Aβ
in brain and CSF in preclinical species. Furthermore,
modeling the preclinical data for translation has
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faithfully predicted the PK/PD of CSF Aβ lowering in
both NHVs and AD patients.
Nevertheless, the presence of plaques in patients pre-

sents a potential confound for interpreting or expecting
changes in CSF Aβ in patients. There is still active de-
bate regarding the role of amyloid plaques in producing
the cognitive deficits observed in AD (for example, [87]).
Neurons that are proximal to plaques display aberrant
dystrophic neurites with disrupted trajectories indicative
of synaptic dysfunction (for example, [88]) and plaques
have been hypothesized to create and sustain neurotoxic
microenvironments [89] and perturb mitochondrial
function [90]. In patients, alterations in functional brain
connectivity have been reported in plaque-bearing re-
gions in cognitively normal subjects (for example,
[91,92]). However, it remains unclear to what extent
such proximal, plaque-associated dysfunction contrib-
utes to the global cognitive impairment observed in AD
patients, particularly since cognitive function did not im-
prove in a small number of patients with reduced plaque
after treatment with AN1792 [93,94].
It has also been hypothesized that amyloid plaques are

protective and serve as a mechanism for clearance of
soluble amyloid species from the interstitial space (for
example, [87]). Furthermore, under conditions in which
soluble Aβ is decreased (for example, in the presence of
a therapeutic that lowers soluble Aβ) there is speculation
that the most recently plaque-associated Aβ may dissoci-
ate, re-attaining a soluble state in parenchyma and the
potential to become toxic to neurons. Pre-clinically,
measurements of interstitial Aβ suggest equilibrium be-
tween soluble and insoluble forms of Aβ [95] and a
study that compared plaque removal by two antibodies
that recognized either soluble or fibrillar Aβ demon-
strated that only the fibril-preferring antibody decreased
plaque load [96]. Finally, a recent study suggests that, in
the presence of very low plasma Aβ, plaque volume does
not change in Tg mice [97].
In the clinic, an examination of the PK/PD analyses

comparing the CSF Aβ-lowering effects of avagacestat in
AD patients and NHVs demonstrates little difference in
these two populations, suggesting that the potential con-
tribution of soluble Aβ derived from plaque may be
modest [79,86]. Similarly, recent evidence from BACEi
studies in AD patients and NHVs suggests that the po-
tency for reducing Aβ peptides is equivalent in these hu-
man populations and that the fraction of CSF Aβ
peptides that is not sensitive to BACE inhibition (and
therefore may be derived from an alternative source,
such as plaques) is quite small, ranging from 2 to 6%
[98]. Furthermore, any association of soluble Aβ to pla-
ques does not limit the ability to detect therapy-induced
decreases in CSF Aβ in patients [86,99]. Thus, our view
is that while soluble Aβ is likely to be in equilibrium
with plaques [12,95], and some fraction of soluble Aβ
will associate with plaques, the data reported to date
suggest that plaques are unlikely to provide a significant
supply of soluble Aβ to CSF. Therefore, the ability to de-
tect Aβ lowering in the CSF of AD patients should not
be confounded by the presence of plaques, especially if
lowering has been demonstrated in healthy volunteers.
Nevertheless, the Aβ PET ligands have a clear role in
AD diagnosis and can be used as target engagement bio-
markers for some potential therapeutics, including anti-
bodies [100,101].
How have the different Aβ-lowering mechanisms fared

in late stage clinical trials? A summary is provided in
Table 4. Avagacestat was tested in both mild-moderate
and pre-dementia patient populations without evidence
of efficacy, but the pre-dementia study was discontinued
prior to the planned completion. The acute and steady
state lowering of CSF Aβ produced by avagacestat in
NHVs was substantial, but tolerability declined at doses
that lowered CSF Aβ by more than approximately 15%
in NHVs and especially in AD patients [85,86]. Thus, the
maximum tolerated Aβ lowering was less than the 25%
minimum criteria proposed above.
None of the published clinical data for semagacestat

disclose evidence for steady state lowering of CSF Aβ in
either NHVs [102] or AD patients [103,104]. However, a
stable isotope labeling kinetic (SILK) study did demon-
strate acute inhibition of the appearance of newly syn-
thesized Aβ in the CSF [105] and reduction of shorter
forms of Aβ have been interpreted as target engagement
[106,107]. While the SILK study provided evidence for
target engagement and inhibition of Aβ synthesis for a
short period of time after dosing, the lack of steady state
lowering of CSF Aβ at tolerated doses suggests that
semagacestat may not have lowered soluble brain Aβ to
a significant degree in NHVs or AD patients. Phase III
studies demonstrated that semagacestat was not effica-
cious but exacerbated the cognitive decline in treated
patients [108]. Thus, for the two GSIs that have achieved
late stage clinical development, neither have achieved
25% lowering of soluble CSF Aβ in AD patients at toler-
able doses and both have failed in the clinic. Taken to-
gether, the avagacestat and semagacestat examples
suggest that, compared with NHVs, AD patients may be
more sensitive to any unintended effects of potential
therapeutics.
A small number of GSMs have also been tested in

both NHVs and AD patients. Tarenflurbil failed in phase
III [109], but CSF Aβ lowering was not reported in
humans and the ability of the compound to lower brain
Aβ in preclinical species has been the subject of debate
[110,111]. CHF-5074 lowers Aβ in mouse models of
APP overexpression but only after chronic dosing (that
is, there are no sub-acute effects of this compound on
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Table 4 Cerebrospinal fluid Aβ lowering - summary of clinical trial results

Name Mechanism Stage of
development

NHVs Patient
population

Patient CSF Aβa Amyloid
PET

Reference

AN1792 Active
vaccine

D/C (phase IIa) NR M-M No change NR [115]

Bapineuzumab Passive
vaccine

D/C ( phase III (i.v.);
phase II (s.c.))

NR M-M No change Decrease [74,116]

Solanezumab Passive
vaccine

Phase III, pre-sym NR M-M, mild Total (40/42) - increased Unbound 42 -
increased Unbound 40 - decreased

NR [117,122]

Crenezumab Passive
vaccine

Phase I/II NR Pre-sym, FAD NR NR [127]

Gantanerumab Passive
vaccine

Phase II/III NR M-M,
pre-dem

NR Decrease [101]

IVIG Anti-
inflammatory

Phase III NR M-M No change NR [126]

Tarenflurbil GSM D/C (phase III) NR M-M NR NR [109]

Semagacestat GSI D/C (phase III) No
change

M-M No change NR [102-104]

Avagacestat GSI D/C (phase II) ≥50%
decrease

M-M High dose: ~50% decrease Tolerated
doses: ≤15% decrease

NR [79,85,86]

LY2811376,
LY2886721

BACE
inhibitor

D/C (phase II) ≥50%
decrease

M-M NR NR [82]

MK8931 BACE
inhibitor

Phase II NR M-M ≥80% decrease NR [99]

aMost advanced stage clinical trial. Aβ, amyloid-β; BACE, β-site APP-cleaving enzyme; CSF, cerebrospinal fluid; D/C, clinical development discontinued; FAD, familial
Alzheimer's disease; GSI, γ-secretase inhibitor; GSM, γ-secretase modulator; i.v., intraventricular; M-M, mild to moderate Alzheimer’s disease; NHV, normal healthy
volunteer; NR, not reported; PET, positron emission tomography; pre-dem, predementia; pre-sym, presymptomatic; s.c., subcutaneous.
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brain Aβ [51]) making PK/PD analyses challenging and
calling into question the mechanism of Aβ lowering
after chronic treatment. Nevertheless, this molecule has
completed a small, 12-week phase II study in AD pa-
tients [112] and, while CSF Aβ was measured, no
changes were reported. Several companies [113] have
disclosed preclinical Aβ lowering data on GSMs and
some of these publications include measurement of both
brain and CSF and PK/PD analyses [80,81]. However, no
clinical data have been released despite the disclosure of
phase I studies sponsored by BMS (New York, NY, USA)
and Eisai (Tokyo, Japan).
While clinical data for GSMs are scarce, there are ex-

cellent examples of preclinical PK/PD data sets gener-
ated with BACEis, with subsequent translation to clinical
studies in one instance thus far [82,83]. Lilly (Indianapo-
lis, IN, USA)has disclosed the most data, establishing a
convincing relationship between brain and CSF lowering
with subsequent PK/PD modeling and translation to
humans [82]. Merck (Whitehouse Station, NJ, USA) has
also disclosed clinical data with a BACEi [99]. The ex-
tent of lowering of CSF Aβ produced by both of these
BACEis in NHVs and AD patients is unprecedented and
can exceed 90%, suggesting that lowering of Aβ in the
brain is substantial. Unfortunately, the lead Lilly mol-
ecule, LY2886721, produced hepatic adverse effects in
AD patients (13 June 2013, Lilly press release) which
forced termination of the phase II study. However, the
phase II development of the Merck BACEi continues,
suggesting that the hepatic issues produced by
LY2886721 may be off-target, compound-specific and
unrelated to BACE inhibition. Importantly, these data
indicate that BACE inhibition is currently the most
promising therapeutic modality to directly test the Aβ
hypothesis of AD.

Anti-amyloid-β antibodies and IVIG
More than a decade after the initial reports of positive ef-
fects on pathology and cognition produced by Aβ
immunization in TgAPP mice [114], it is now well estab-
lished that reduction of plaque volume and restoration of
functional deficits in TgAPP mice can be achieved by both
passive and active Aβ immunotherapy [56]. It was these
findings in preclinical models that prompted clinical de-
velopment of Aβ immunotherapy. However, the results
from the late phase clinical studies assessing this modality
have been predominantly negative. AN1792, an active vac-
cine, was discontinued in phase II due to meningoenceph-
alitis [115] and produced a small increase in CSF Aβ. Two
passive anti-Aβ immunotherapies, bapineuzumab and
solanezumab, have completed phase III clinical studies.
Intravenous administration of bapineuzumab failed [116],
but a subcutaneous study continues. Solanezumab has
completed two phase III studies with mixed results [117].
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However, the data for solanezumab in mild AD patients
were sufficiently encouraging to warrant an additional
phase III study (3 July 2013, Eli Lilly press release).
What is the relationship of these results to the pro-

posal that a minimum of 25% soluble Aβ reduction must
be achieved to produce efficacy? Unfortunately, the an-
swer to this question is unclear. Assessing the PK/PD of
antibody therapy is more challenging than for small mol-
ecule therapy for several reasons, including antibodies
that recognize multiple forms of Aβ (soluble, fibrillar),
no direct measure of target engagement in brain (anti-
gen-antibody complex), difficulty in assessing free anti-
body concentrations compared with total concentrations
(that is, antibody bound to antigen), and a large pool of
antibody in plasma that can exchange with brain anti-
body [118-120]. Preclinical studies assessing the effects
of antibody therapy on CSF concentrations of Aβ are
rare if not non-existent, leaving clinicians with very little
data upon which to base the dose selection and dosing
intervals required for efficacy. Nevertheless, in clinical
studies for both solanezumab and bapineuzumab, assess-
ments of CSF Aβ and tau were made. In the bapineuzu-
mab phase II and III studies, no changes in CSF Aβ
were detected and small decreases in both phospho-
tau181and total tau were reported [71,72,116,121]. For
solanezumab the picture is more complex. In the phase
II study, total CSF Aβ40 and Aβ42 increased. Unbound
Aβ42 also increased while unbound Aβ40 was non-
significantly decreased [122]. The increase in total CSF
Aβ was interpreted as evidence for central nervous sys-
tem penetration of the antibody while the increase in
CSF Aβ42 was suggested to be due to potential dissol-
ution of amyloid plaques (see below). In the phase III
studies, unbound Aβ40 decreased while unbound Aβ42
did not change compared to controls [117]. The in-
creases in total CSF Aβ were interpreted as evidence for
central nervous system penetration of the antibody while
the changes in unbound Aβ peptides were suggested to
be due to potential alterations in compartment equilibria
(for example, central to peripheral or fibrillar to soluble).
In summary, the Aβ immunotherapy data disclosed to
date does not provide a clear picture on the effects on
unbound, soluble CSF Aβ, suggesting that the utility of
CSF Aβ as a target engagement biomarker for immuno-
therapy may be limited. Alternatively, the potential effi-
cacy and biomarker effects of the antibodies may not
have manifested due to limitations in dosing levels or
frequency and the failure to achieve efficacious brain
concentrations. For example, in contrast to small mol-
ecule therapy, the implications of these negative findings
are difficult to interpret due to the lack of preclinical
analyses that define a relationship between antibody ex-
posure, brain and CSF Aβ, and functional measures of
efficacy such as synaptic and cognitive measures.
IVIG is a purified preparation of human immunoglob-
ulins that has been used therapeutically for immune-
deficiency disorders. Based on preclinical data and the
hypothesis that IVIG would provide a source of anti-Aβ
antibodies and possibly anti-inflammatory activity
[123,124], IVIG has been evaluated through phase III
clinical trials. While reductions in total CSF Aβ were re-
ported for small pilot studies [125], larger phase II stud-
ies resulted in no detectable changes in CSF Aβ [126].
The recently disclosed phase III study results demon-
strated no treatment effect for IVIG (Baxter press release
7 May 2103).
A more commonly used measure of target engagement

in clinical studies employing immunotherapy, especially
for those antibodies that recognize fibrillar Aβ, is amyl-
oid PET imaging (for example, [102,103]). As with CSF,
however, very few, if any, preclinical analyses describe a
relationship between plaque reduction and functional ef-
ficacy. Any such analysis would then require overlay or
inclusion of immunotherapy PK to be helpful in dose se-
lection for clinical trials.

Conclusion
The genetics and preclinical literature support the hy-
pothesis that a 25% reduction in soluble Aβ is a scientif-
ically based minimal criterion for any therapeutic
directed toward lowering a soluble, pathologically rele-
vant species of Aβ. Preclinical data demonstrate that sol-
uble CSF Aβ can reflect soluble brain Aβ and PK/PD
analyses of preclinical data reliably translate to the clinic
for lowering of soluble CSF Aβ and, by inference, brain
Aβ. While amyloid PET ligands can provide information
on target engagement, especially for some antibodies,
the relationship between plaque reduction, antibody ex-
posure and efficacy has yet to be reported for any poten-
tial antibody therapeutic. The data from clinical trials
disclosed to date suggest that no potential therapeutic
has lowered soluble Aβ by 25%. Thus, while enormous
progress has been made in understanding the basic
mechanisms of AD and the identification of rational
therapeutic mechanisms such as antibodies, GSIs, GSMs
and BACEis, the amyloid hypothesis has yet to be ad-
equately tested clinically by any of the current thera-
peutic moieties. Furthermore, the notion that the
amyloid hypothesis is incorrect or has been disproven is
premature. The potential of the current cohort of 'sec-
ond generation' therapeutics, such as BACEis, which ap-
pear to provide potential for testing a broad range of Aβ
lowering, and antibodies like crenezumab [127] and gan-
tenerumab [128], is promising and may ultimately enable
testing of the amyloid hypothesis.
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