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Abstract

Introduction: Peripheral biomarkers to diagnose Alzheimer’s disease (AD) have not been established. Given
parallels between neuron and platelet biology, we hypothesized platelet membrane-associated protein changes
may differentiate patients clinically defined with probable AD from noncognitive impaired controls.

Methods: Purified platelets, confirmed by flow cytometry were obtained from individuals before fractionation by
ultracentrifugation. Following a comparison of individual membrane fractions by SDS-PAGE for general proteome
uniformity, equal protein weight from the membrane fractions for five representative samples from AD and five
samples from controls were pooled. AD and control protein pools were further divided into molecular weight
regions by one-dimensional SDS-PAGE, prior to digestion in gel. Tryptic peptides were analyzed by reverse-phase
liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Ionized peptide intensities were
averaged for each identified protein in the two pools, thereby measuring relative protein abundance between the
two membrane protein pools. Log2-transformed ratio (AD/control) of protein abundances fit a normal distribution,
thereby permitting determination of significantly changed protein abundances in the AD pool.

Results: We report a comparative analysis of the membrane-enriched platelet proteome between patients with mild to
moderate AD and cognitively normal, healthy subjects. A total of 144 proteins were determined significantly altered in
the platelet membrane proteome from patients with probable AD. In particular, secretory (alpha) granule proteins were
dramatically reduced in AD. Of these, we confirmed significant reduction of thrombospondin-1 (THBS1) in the AD
platelet membrane proteome by immunoblotting. There was a high protein-protein connectivity of proteins in other
pathways implicated by proteomic changes to the proteins that define secretory granules.

Conclusions: Depletion of secretory granule proteins is consistent with a preponderance of post-activated platelets
in circulation in AD. Significantly changed pathways implicate additional AD-related defects in platelet glycoprotein
synthesis, lipid homeostasis, amyloidogenic proteins, and regulators of protease activity, many of which may be
useful plasma membrane-expressed markers for AD. This study highlights the utility of LC-MS/MS to quantify
human platelet membrane proteins and suggests that platelets may serve as a source of blood-based biomarkers
in neurodegenerative disease.
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Introduction
Alzheimer’s disease (AD) is the most common form of
dementia worldwide. Pathologically, it is characterized by
the accumulation of extracellular beta amyloid (Ab) pla-
ques and intracellular tau tangles as well as gliosis and
neuronal cell death [1-3]. More recently, abnormalities in
synaptic transmission and vesicular trafficking have been
reported in early AD [4,5]. As the population ages and
the number of people affected with AD increases, it is
becoming increasingly important to identify biomarkers
that can be used to diagnose the disease as early as possi-
ble. While significant progress has been made in brain
imaging and characterizing fluid biomarkers of AD in
cerebrospinal fluid (CSF) [6,7], peripheral biomarkers
have not been well established for clinical use. Blood-
based biomarkers are especially attractive in a clinical
setting compared to CSF, because blood samples are rela-
tively easy to obtain.
Potential sources of blood-based biomarkers are plate-

lets, small (1 to 4 μ), anuclear fragments derived from
megakaryocytes in the bone marrow [8,9]. Platelets are
dynamic and can exist in either a resting or activated state
[8,9]. Resting platelets are inert; however, once activated,
they undergo restructuring of their cytoskeleton and
secrete numerous biologically active factors including
cytokines, chemokines, and neurotransmitters [10].
Although activated platelets are perhaps best known for
their role in hemostasis and thrombosis, they also play a
significant role in inflammation and immunity [11]. Inter-
estingly, platelets share many similarities with synaptic
terminals in neurons and have been used as a model for
studying synaptic vesicle metabolism. For example, both
platelets and neurons secrete and respond to neurotrans-
mitters and share many of the same secretory pathways
and transporters for neurotransmitter uptake and packa-
ging [12-14]. Platelets also contain a high concentration of
amyloid precursor protein (APP) [15-17] and possess a, b,
and g-secretases [18], enzymes responsible for generating
the Ab peptide. Increased levels of activated platelets have
been reported in patients with early AD compared to
healthy, age-matched controls, and the platelet activation
state has been positively correlated with the rate of cogni-
tive decline measured by the mini mental status exam
(MMSE) [19]. Subsequent studies have reported that
patients with amnestic mild cognitive impairment (MCI)
with elevated levels of activated platelets were at an
increased risk of progression to AD within 3 years [20].
Although a majority of the published studies supports that
activated platelets are higher in patients with AD com-
pared to healthy controls [19-21], other studies [16,22]
have also reported a decrease in platelet activity in AD.
Thus, given the similarities between platelets and neurons
and previously reported abnormalities in the platelet acti-
vation state in AD, platelets may serve as a valuable source

of peripheral biomarkers in patients clinically defined with
probable AD [23-25], while an inventory of proteins chan-
ging in platelets of AD patients may also provide mechan-
istic insight into their change in activation status.
Mass spectrometry (MS)-based proteomics has become

an essential tool for the detection, identification, and
quantification of protein biomarkers from complex mix-
tures including cells and tissue [26]. Proteomic techniques
can provide certain advantages over transcriptomic
approaches, for example in detecting protein loss due to
secretion, although mRNA is maintained for translation in
circulating platelets despite their anuclear status [27].
RNA changes in platelets have been reported in disease
[28]. Whole platelet proteome and subproteomes have
been profiled using liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS) [10,29,30], how-
ever, an analysis of the platelet proteome from patients
with AD compared to that of cognitively normal controls
has been largely unexplored. Cytoskeletal proteins (for
example titin, filamin and actin) represent the most abun-
dant proteins in platelets, contributing to their rigid struc-
ture [10]. A drawback of data-dependent LC-MS/MS is an
intrinsic bias toward sequencing the most abundant pro-
teins in a sample that limits the detection of less abundant
proteins that may be changing in disease [31]. Reducing
the complexity of the sample before LC-MS/MS analysis
is one way to circumvent this problem. Thus, enriching
for the membrane subproteome prior to LC-MS/MS
not only reduces the number of cytoskeletal proteins, but
maximizes the likelihood of detecting less abundant cell-
surface transmembrane proteins altered in disease.
Another advantage of cell-surface platelet membrane bio-
markers is their ability to serve as targets for probes in
orthogonal diagnostic screening approaches including flow
cytometry, which can be readily employed in a clinical
setting.
Herein, we report a comparative analysis of the mem-

brane-enriched platelet proteome between patients with
mild to moderate AD and healthy, cognitively normal,
control subjects. Following label-free quantification of
1,957 proteins in 1,009 homology groups using extracted
ion intensity peptide measurements, 144 proteins were
determined significantly altered in the platelet membrane
proteome from patients with probable AD. Ontology
annotation of altered proteins revealed specific pathways
changing in AD and several that are specific to platelets.
In particular, proteins encompassing the a-secretory
granule pathway including a, b, and g-chains of fibrino-
gen, thrombospondin-1 (THBS1), von Willebrand factor
and fibronectin were dramatically reduced in AD. Of
these, we confirmed THBS1 reduction in the AD platelet
membrane proteome by immunoblotting. Platelets
release a-granule contents when activated [8,32]. Thus,
the major loss of a-secretory granule proteins observed
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in the AD membrane proteome is consistent with
enhanced platelet activation, and maintenance of post-
activated platelets in circulation. We discuss other path-
ways, including platelet glycoprotein synthesis, lipid
homeostasis, membrane-associated amyloidogenic pro-
teins, and regulators of protease activity, as each of these
pathways were also significantly represented in the pro-
teins found to be changing in AD platelet membrane
proteome. Together, these data highlight the utility of
LC-MS/MS to identify and quantify platelet membrane
proteins isolated from humans and suggest that platelets
may potentially serve as a useful source of blood-based
biomarkers in neurodegenerative disease. Whether these
biomarkers have diagnostic value in AD will need to be
established in future longitudinal studies including a lar-
ger number of participants.

Materials and methods
Participant selection
Participants were selected from the Clinical Research in
Neurology (CRIN) database at the Emory Alzheimer’s Dis-
ease Research Center (ADRC). Institutional Review Board
(IRB) approval was obtained from Emory University and
all participants gave written informed consent before
being included in this study. Seven controls and seven
probable AD participants were enrolled in the study
(Table 1), of which five of each group were pooled for pro-
teomic analysis, matched as closely as possible for sex and
age. Control subjects were selected based on a current
MMSE score greater than 27 out of a total 30 points.
Patients with mild to moderate AD all had a consensus
diagnosis of probable AD and were selected based on hav-
ing an MMSE score between 10 and 24. Participants were
selected to be as similar as possible between groups with
respect to age and were matched based on whether or not
they were taking aspirin. Exclusion criteria included parti-
cipants on clopidogrel (for example Plavix), those with
conditions that could cause an increase in platelet activa-
tion level (a history of cancer within the past 5 years, auto-
immune disorders, any acute illness, or chronic illnesses
such as end-stage liver disease, end-stage renal disease
requiring hemodialysis, and end-stage heart failure), and
patients with bleeding disorders or other blood dyscrasias.

Platelet isolation from whole blood
Whole blood (40 cc) was collected in acid citrate dextrose
(ACD) using a 21 gauge butterfly needle. To help prevent
platelet activation and aggregation, the tourniquet was
removed after the initial needle stick and the first 5 cc of
blood withdrawn was discarded. Platelet isolation from the
remaining 35 cc of blood was adapted from Quereshi et al.
[10]. Centrifugation times were optimized to maximize pla-
telet yield and purity based on analysis of the sample by
light microscopy after each step. Blood was centrifuged at

200 × g for 20 minutes immediately after collection to
separate red and white blood cells from platelet-rich
plasma. The top 2/3 of the platelet-rich plasma was col-
lected to minimize white blood cell contamination, and
transferred to a 5 ml polypropylene tube. The platelet-rich
plasma was kept at room temperature and centrifuged
within three hours at 120 g x 6 minutes (Eppendorf 5810
centrifuge, Eppendorf AG, Hamburg, Germany) to remove
additional remaining red and white blood cells. A majority
(top 2/3) of the purified platelet-rich plasma was trans-
ferred to a second 5 ml polypropylene tube and centrifuged
at 1500 × g for 10 minutes. The platelet-poor plasma was
removed and the platelet pellet was resuspended in 1 ml of
citrate wash buffer (11 mM glucose, 128 mM NaCl,
4.3 mM NaH2PO4, 4.8 mM sodium citrate, 2.4 mM citric
acid, pH 6.5) and recentrifuged at 120 × g for 4 minutes.
The washed platelets were transferred to an Eppendorf
tube and pelleted at 1500 × g for 10 minutes in an Eppen-
dorf 5417C table-top centrifuge. The platelet pellet was fro-
zen at -80°C in citrate wash buffer to minimize in vitro
platelet activation. Platelet purity was assessed using flow
cytometry (Becton Dickinson LSRII digital benchtop analy-
zer, Becton, Dickinson and Co., Franklin Lakes, NJ, USA).
Briefly, the sample of purified platelets was stained with
allophycocyanin (APC)-tagged CD45 to identify white
blood cells and fluorescein isothiocyanate (FITC)-tagged
anti-CD41/integrin aIIb to identify platelets. Data were
analyzed using FlowJo (version 7.6.1) software (Tree Star
Inc., Ashland, OR, USA).

Membrane enrichment strategy
The membrane enrichment strategy employed was modi-
fied from previously published methods [33,34]. Briefly,
frozen platelets were thawed on ice, resuspended in a
hypotonic solution containing 100 μl citrate wash buffer
and 900 μl deionized water, and kept on ice for 1 hour.
Following hypotonic lysis, the mixture was sonicated
(Sonic Dismembrator, Thermo Fisher Scientific, Waltham,
MA, USA) twice for five seconds at 20% amplitude (maxi-
mum intensity) to disrupt cell membranes and large cytos-
keletal fragments. Following sonication, the whole platelet
homogenate (W) was centrifuged at 1500 × g for 10 min-
utes (Eppendorf 5417C) to sediment any cellular debris.
The supernatant (S1) was transferred to a polycarbonate
ultracentrifuge tube and centrifuged at 180,000 × g for one
hour at 4°C (Beckman Optima TLX ultracentrifuge, TLA
100.4 rotor, Beckman Coulter Inc., Brea, CA, USA). The
supernatant (S2) containing the soluble protein fraction
was removed and saved. The resulting pellet (P2) was
resuspended in 1 ml of 0.1 M sodium carbonate, pH 11
with protease and phosphatase inhibitors and incubated on
ice for 15 minutes to strip proteins only loosely associated
with the membrane. The samples were recentrifuged at
180,000 × g for one hour at 4°C (Beckman Optima TLX
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ultracentrifuge, TLA 100.4 rotor). The supernatant (W1)
was removed and saved and the resulting membrane-
enriched, insoluble pellet (P3) was dissolved in 50 μl 8 M
urea 10 mM Tris pH 7.8. Protein concentrations from each
of the five fractions (W, S1, S2, W1, P3) were determined
by the bicinchoninic acid (BCA) method (Pierce, Rockford,
IL, USA). The different fractions obtained from the enrich-
ment protocol were analyzed by silver stain. Briefly, protein
(1 μg) was loaded from each fraction into a 10% acrylamide
gel and separated by gel electrophoresis. The gel was fixed
in a solution containing 50% methanol and 5% acetic acid
for 10 minutes and washed with deionized water. After rin-
sing in 0.02% sodium thiosulfate for 1 minute, the gel was
stained with 0.1% silver nitrate for 10 minutes and devel-
oped with 3% sodium carbonate, 0.05% formaldehyde solu-
tion until the bands were sufficiently stained.

Mass spectrometry, peptide identification and
quantification
Protein (20 μg/case) from the membrane-enriched fraction
(P3) was pooled for proteomic analysis. After pooling,
samples were alkylated with 10 mM dithiothreitol (DTT)
and 50 mM iodoacetamide (IAA). Total protein was
loaded into a 10% acrylamide gel and separated by SDS-
PAGE. Gels were stained with Coomassie blue overnight.
After destaining, gel lanes were cut into three molecular
weight regions. Individual gel regions were diced into
1 mm3 pieces and destained with 50% acetonitrile (ACN)
and 50 mM ammonium bicarbonate until the pieces
became clear. Gel slices were digested overnight with tryp-
sin (12.5 ng/μL; Promega Corp., Madison, WI, USA)
diluted 1:20 in 50 mM NH4HCO3 at 37°C. The following
day, peptides were extracted with buffer (5% formic acid,
50% ACN), dried in a SpeedVac concentrator (Thermo
Scientific) and stored at -20°C. Purified peptides were ana-
lyzed by reverse-phase liquid chromatography coupled
with tandem mass spectrometry (LC-MS/MS) and each
sample was analyzed in technical replicate [35]. Briefly,
peptide mixtures were loaded onto a C18 column [100 μm
internal diameter (i.d.), 20 cm long, 2.7 μm HALO resin
from Michrom Bioresources, Inc., Auburn, CA, USA] and
eluted over a 10 to 30% gradient (Buffer A: 0.1% formic
acid, 0.005% heptafluorobutyric acid, and 5% acetonitrile;
Buffer B: 0.1% formic acid, 0.005% heptafluorobutyric acid,
and 95% acetonitrile) for 90 minutes. Eluates were moni-
tored in a MS survey scan followed by 10 data-dependent
MS/MS scans on an LTQ-Orbitrap ion trap mass spectro-
meter (Thermo Finnigan, San Jose, CA, USA). The LTQ
was used to acquire MS/MS spectra (3 m/z isolation
width, 35% collision energy, 5,000 AGC target, 200 ms
maximum ion time). The Orbitrap was used to collect MS
scans (300 to 1600 m/z, 1,000,000 AGC target, 1,000 ms
maximum ion time, resolution 30,000). All data were con-
verted from raw files to the .dta format using ExtractMS

version 2.0 (Thermo Electron, San Jose, CA, USA) and
searched against human reference database downloaded
from the National Center for Biotechnology Information
(19 November 2008) using the SEQUEST Sorcerer algo-
rithm (version 3.11, SAGE-N Research, San Jose, CA,
USA). Searching parameters included mass tolerance of
precursor ions (±50 ppm) and product ion (±0.5 m/z),
partial tryptic restriction, with a dynamic mass shift for
oxidized Met (+15.9949), two maximal modification sites
and a maximum of two missed cleavages. Only b and y
ions were considered during the database match. To eval-
uate the false discovery rate (FDR), all original protein
sequences were reversed to generate a decoy database that
was concatenated to the original database (77,764 entries)
[36]. The FDR was estimated by the number of decoy
matches (nd) and total number of assigned matches (nt).
FDR = 2*nd/nt, assuming mismatches in the original
database were the same as in the decoy database [36]. To
remove false positive matches, assigned peptides were
grouped by a combination of trypticity (fully and partial)
and precursor ion-charge state (+2, +3 and +4). Each
group was first filtered by mass accuracy (20 ppm) and by
dynamically increasing correlation coefficient and ΔCn
values to reduce theoretical protein FDR by the above
measure to less than 1%. All MS/MS spectra for proteins
identified by a single peptide were manually inspected as
described previously [37]. If peptides were shared by mul-
tiple members of a protein family, the matched members
were clustered into a single group. On the basis of the
principle of parsimony, the group was represented by the
protein with the greatest number of assigned peptides. All
identified proteins (represented by the top homolog within
a group (1,009 proteins identified with unique peptides)
and ungrouped (1,957 total potentially identified proteins
and isoforms)) are provided respectively in Table S1 and
Table S2 in Additional File 1. Quantification of peptides
and proteins was based on the comparison of paired pep-
tides from AD and control samples. Ion current intensities
for identified peptides were extracted in MS survey scans
of high-resolution and a ratio of the peak intensities for
the peptide precursor ion was calculated using in-house
DQuan software as described previously [38].

Establishing candidate biomarkers with statistical and
pathway analysis
Statistical analysis to evaluate the significance of the pro-
tein changes was performed as previously described with
modifications [38,39]. Relative differences in protein levels
were derived from extracted ion intensities for all identi-
fied peptides and expressed as signal-to-noise ratios. A
ratio of ion intensities for the peptide precursor ions from
AD and control pools were calculated, log2 transformed,
and averaged to obtain a protein ratio across samples
(AD/control). A null experiment was represented by a
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comparison of log2-transformed protein ratios for control
replicates (replicate 1/replicate 2). As predicted by the cen-
tral limit theorem, the histogram of the differences (AD/
control) and the null experiment (replicate 1/replicate 2)
between protein log2 ratios fit Gaussian distributions,
which enabled evaluation of systematic bias according to
the mean and biological variation based on standard devia-
tion (SD). A Gaussian curve for the binned frequencies of
log2 ratios was determined using Igor Pro v6.1 (Wave-
Metrics, Inc., Lake Oswego, OR, USA) and the mean was
subtracted from all log2 ratios to center the population of
average AD/control log2 ratio and control 1/control 2 at
zero. The SD was determined via the Gaussian width as
0.72 log2 ratio units for AD/control and 0.30 for the null
experiment (control 1/control 2). A total of 144 proteins
were considered significantly changed and met the follow-
ing criteria, i) fell outside the null experiment distribution
or beyond 99.9% confidence interval (3.29-fold SD), ii) had
an absolute value ≥1.17, (3.55 times the standard deviation
of the null experiment), iii) had a coefficient of variation
(CV) of less than 100% and iv) had a signal-to-noise ratio
greater than 10 in both control measurements. True bio-
marker FDR was estimated by counting the false positives
surviving the above filters in the null experiment and cal-
culating this number as a percentage of the total number
of biomarkers proposed in the list for the AD/control
comparison, as described in results. The list of gene sym-
bols for these proteins was input into DAVID pathway
analysis v6.7 [40], and significantly changing ontological
classes of proteins were further considered in the context
of available references which related each class to AD.

Antibodies
Primary antibodies used in these studies were as follows:
FITC-conjugated CD41/integrin aIIb (1:1000, mouse
monoclonal (SZ.22); Abcam, Cambridge, MA, USA);
APC-conjugated CD45 (1:1000, mouse monoclonal; BD
Pharmingen, Franklin Lakes, NJ, USA); THBS1 (1:1000,
mouse monoclonal; Thermo Fischer Scientific, Waltham,
MA, USA); beta-actin (1:1000, mouse monoclonal;
Abcam, Cambridge, MA, USA); the antibody dilutions
for THBS1 and beta-actin reflect prior dilution of each
antibody (1:1) with glycerol.

Immunoblotting
Equal concentrations of protein from each sample were
loaded into a 10% acrylamide gel and separated by SDS-
PAGE. Proteins were transferred onto polyvinylidene
fluoride (PVDF) Immobilon-P membranes (Millipore,
Billerica, MA, USA) overnight at 4°C. Immunoblots
were blocked for 2 hours at room temperature with
Tris-buffered saline (TBS)/Tween and blocking buffer
(5x blocking buffer ultrapure from US Biological, Salem,
MA, USA) and probed for the protein of interest with a

primary antibody overnight at 4°C. The following day,
blots were incubated with fluorophore-conjugated sec-
ondary antibodies (1:20,000) for 1 hour in the dark. All
blots were scanned and quantified using the Odyssey
Infrared Imaging System (Li-Cor Biosciences, Lincoln,
NE, USA). Statistical analysis was performed using a
two-tailed Student’s t-test.

Results and discussion
Participant selection
Characteristics of participants with clinically diagnosed
AD and controls are presented in Table 1. Controls were
selected to be as similar as possible to AD patients
(matched as closely as possible with regard to age and
sex). As expected, there was a significant difference
between the groups in MMSE scores (P = 0.01). Aspirin
status was matched between groups to help control for
any effect of aspirin on the platelet proteome. By matching
for aspirin usage, we were able to obtain a sample more
representative of the general population affected by AD.
Furthermore, ideal biomarkers will change in disease inde-
pendent of factors such as medications. Apolipoprotein
(Apo)E genotype of selected cases was not considered,
since subsequent pooling of samples has the effect of can-
celling specific differences in protein abundance due to
individual case variation. Quantitative proteomic analysis
found no significant difference in ApoE levels between
control and clinically diagnosed AD platelet membrane
fractions, as described below.

Platelet isolation and membrane protein enrichment
strategy
Platelets from whole blood were isolated through centri-
fugation as previously published [10] using a citrate buf-
fer, which significantly minimizes in vitro platelet
activation (Figure 1). To assess the purity of the isolated
platelets, flow cytometry was performed after double-
labeling with antibodies against the platelet-specific mar-
ker, CD41 (integrin aIIb), and a marker for white blood
cells, CD45. Results demonstrate that the platelet-
enriched samples contained greater than 90% CD41
positive cells, whereas CD45 positive cells made up 1.3%
of the cells (Figure 2A-C). Platelets contain an extensive
intracellular membrane, an open canalicular system that
serves as a reservoir for plasma membrane proteins and
membrane receptors and provides a passage for granule
release after activation [41]. There are also numerous
membrane-bound granules in platelets, the contents of
which could be more easily identified in a membrane-
enriched sample. Differential centrifugation fractions
obtained during enrichment of the membrane proteome
prior to LC-MS/MS analysis (Figure 2D) were first
visualized by silver stain of a representative sample indi-
cating altered protein complexity in the whole (W),
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soluble (S2), wash (W) and membrane fraction (P3)
(Figure 2E). Immunoblotting with antibodies against
CD41, a platelet-specific transmembrane protein,
demonstrated an average of 2.2-fold enrichment in the
membrane fraction (Figure 2F). Conversely, immuno-
blotting with antibodies against actin, a cytoskeleton
protein, demonstrated approximately 20-fold depletion
in the membrane fraction compared to whole platelet
lysate (averaged from three independent experiments).
To assess the global enrichment of proteins in the mem-
brane fraction, LC-MS/MS analysis was performed from
equal amounts of whole platelet lysate (W) and mem-
brane-rich fraction (P3). TMHMM 2.0 [38,42] was used
to predict the number of transmembrane domains
(TMD) for each protein. In the membrane-enriched
fraction, 40% (389/966) of proteins were predicted to
have a TMD. This was a 2.5-fold increase from an analy-
sis of the whole platelet proteome performed in parallel
in which 17% (225/1290) of proteins identified contained
a predicted TMD (Table S2 in Additional file 1). The
results are consistent with a similar previously published
enrichment strategy for membrane proteins from plate-
lets [30]. The most significantly enriched and depleted
proteins in the membrane fraction were determined by
relative quantification using spectral counting (Table S2

in Additional file 1). These included CD41 and beta-
actin, which were significantly enriched and depleted,
respectively, in the membrane fraction consistent with
immunoblot analysis. Together, these results indicate
that the differential centrifugation approach was effective
at both enriching membrane proteins and depleting solu-
ble cytoplasmic proteins.

Label-free quantification of membrane-enriched
proteome differences in AD
To determine differences between AD and control
membrane samples, pooled control or AD cases were
analyzed by LC-MS/MS (Table 1). Pooling samples prior
to LC-MS/MS analysis has been shown to decrease
intersubject variability and enhance the likelihood that
any changes detected would be universal to disease [43].
Prior to pooling, each control and probable AD mem-
brane-rich protein fraction was visualized by silver stain-
ing following 1D gel electrophoresis to confirm equal
protein contributions and to demonstrate comparable
purity and integrity (Figure 3A). Peptides were extracted
from the samples following an in-gel tryptic digest and
analyzed in technical replicate using LC-MS/MS in a
data-dependent manner as described in the methods.
After database searching, we identified and quantified

Whole Blood (collected in ACD)

S1
(Platelet Rich Plasma = PRP)

P1
(RBCs, WBCs)

200 x g,  23min

120 x g,  6 min

S2
(PRP minus 

RBCs, WBCs)

P2
(RBCs, WBCs)

1500 x g,  10 min

S3
(Platelet Poor Plasma)

P3
(platelet pellet)

1ml wash buffer, 
120 x g, 4 min

P4
(remaining WBC, RBC)

S4
(washed

platelets)

1500 x g,
10 min washed

platelet pellet  
Figure 1 Workflow diagram of platelet membrane purification protocol.
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7,910 peptides representing 1,957 proteins (Table S2 in
Additional file 1, organized by homology groups with
highest to lowest total number of peptide identifica-
tions). A total of 1,009 homologous protein groups
(each with unique peptides that could be used for quan-
tification) were identified across control and AD sam-
ples (Table S1 in Additional file 1, sorted by log2 (AD/
control) fold difference from decreasing in AD to
increasing). Of these, 38% (378/1009) contain at least
one transmembrane domain predicted by TMHMM 2.0
[38,42], and DAVID ontology analysis reported that 55%
(559/1009) had Protein Information Resource annota-
tions relating to ‘membrane’.
To determine candidate AD platelet membrane protein

biomarkers from our list of 1,009 quantified proteins, we
employed an approach to estimate true FDR that fully
utilizes the power of technical replicates and a null
experimental comparison to quantify false positives
under any given filtering criteria [39]. Relative differences
in protein levels, ion intensities for identified peptides,
expressed as signal-to-noise ratios, were extracted in MS
survey scans of high-resolution. A ratio of ion intensities
for the peptide precursor ions from AD and control LC-

MS runs were calculated, log2 transformed, and averaged
to obtain a protein ratio across samples (AD/control),
and a null experiment log2-transformed ratio for control
replicates (replicate 1/replicate 2). As predicted by the
null hypothesis, the histogram of the differences (AD/
control) and null experiment between protein log2 ratios
fit Gaussian distributions, which enabled us to evaluate
systematic bias according to the mean and biological var-
iation based on SD (Figure 3B). The null experiment has
a much smaller SD (log2 = 0.30) than the average log2
(AD/control) population (SD = 0.72). This is consistent
with high reproducibility across replicates and indicates
that our quantitative bioinformatics approach has suffi-
cient precision to detect the biological variance, which
manifests as a much wider SD for the latter population.
As a filtering criterion, proteins with potentially increased
or decreased abundance in AD that fell outside the 99.9%
two-tailed confidence interval were considered as a sub-
group of interest. Increased confidence in the average of
two technical replicates was obtained by restricting pro-
teins considered significantly changed to those with a
coefficient of variation (standard deviation as a percen-
tage of the mean) of less than 100%, where this filtering

D Whole Platelets (W)

P1 S1

P2 S2 (soluble)

P3
(membrane)

S3
(wash)

1,500 x g,  10 min

180,000 x g, 1 hr

Na2CO3 (pH 11) incubation
180,000 x g,  1 hr

E F

A B C

W  S1   S2   S3 P3

Silver stained

200
150
100

75

50

37

25

kDa kDa

CD41

β-Actin

W  S1   S2   S3 P3

Western Blot

200

150

100
75

50

37

Figure 2 Platelet isolation strategy yields samples >90% pure platelets by flow cytometry. (A) Purified platelets were double stained for
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criterion alone reduced false positives surviving filtering
in the null experiment from 74 to 24 (Figure 3C). Further
applying an additional filter for minimum signal-to-noise
resulted in false positives dropping to 10 when a mini-
mum signal-to-noise ratio of 10 was required. This trans-
lates to a FDR of 6.9%. The list of 144 significantly
changed proteins corresponding to this FDR in AD

relative to the control platelet membrane fraction is
given in Table S3 in Additional file 1.

Changes in platelet secretion and activation observed in
patients with AD
Ontologies (categorization of the list into pathways,
molecular functions, keywords, cellular compartments,
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and so on) significantly overrepresented within the list
of 144 significantly changing proteins were determined
using DAVID [40] (Table 2). Fifteen proteins, or about
10% of the list, represent factors likely specific to plate-
lets that fall into the following six overlapping categories
(A to F): platelet activation (Group A; P = 0.0029), pla-
telet alpha granules (Group B; P = 5.1 × 10-9), secretory
granules (Group C; P = 1.7 × 10-5), the complement
control module (Group D; P = 0.012), complement and
coagulation cascades (Group E; P = 2.3 × 10-5), and pla-
telet alpha granule lumen (Group F; P = 1.8 × 10-7). All
but one of the proteins in these six categories were sig-
nificantly decreased, rather than increased, in AD rela-
tive to the control pool, including a-, b-, and g-chains
of fibrinogen. Fibrinogen is involved in the coagulation
cascade and is secreted by alpha granules after platelet
activation. It has also been included in several panels of
biomarkers for AD. According to Thambisetty et al.,
decreased fibrinogen in association with other changes
in plasma has been associated with lower brain volumes
in AD [44]. Craig-Shapiro et al. have included fibrino-
gen in a multiplex immunoassay panel to analyze CSF
biomarkers for AD. They reported that a finding of
increased fibrinogen levels in the CSF in association
with changes in other proteins increases the ability of
the CSF tau/Ab42 ratio to discriminate between patients
with very mild to mild dementia and those who are cog-
nitively normal [45]. Platelets release alpha granules
when activated. As this study looked at a membrane-
enriched fraction, this finding suggests that AD platelets
have a generally decreased or exhausted reserve of alpha
granules consistent with having undergone activation.
We speculate that low levels of fibrinogen observed in
platelets from patients with AD is complementary to the
reported increase in fibrinogen infiltration into AD cen-
tral nervous system (CNS) tissue associated with Ab
depositions and microglial activation [46]. Contact of pla-
telets with amyloid aggregates has been shown to result
in their activation [47], and Ab stimulates abnormal clots
of cleaved fibrinogen (fibrin) resistant to clearance [48].
These findings in combination suggest widespread AD-
specific platelet activation, supported by previous studies
that have reported platelet activation in individuals with
AD [19-21].
The single increasing protein in Table 2, platelet glyco-

protein IX (GP9), a surface protein on platelet and alpha
granule membranes [49] is known to act as a receptor for
von Willebrand factor [50]. This represents a novel plate-
let surface-expressed candidate marker that could be spe-
cifically increasing in a manner linked to AD. Surprisingly,
other members of the GP9-containing transmembrane
receptor complex, which has a reported stoichiometric
configuration involving glycoproteins V and Ib alpha and
beta chains [51], were well quantified and found to be

unchanging in the AD platelet membrane proteome
(Table S3 in Additional file 1). This suggests a change in
the configuration of the multimeric receptor and poten-
tially, a change in the responsiveness of platelets in AD
individuals to von Willebrand factor. It is interesting to
note that von Willebrand factor is well expressed in brain
vascular endothelia [52]. Should an increase in GP9 corre-
spond with an increase in platelet affinity for CNS vascular
endothelial walls, this could be consistent with a causative
role for increased surface GP9 on platelets in producing
conditions whereby local von Willebrand factor and amy-
loid in CNS blood vessel endothelium stimulate alpha
granule release and local fibrinogen invasion into the CNS
of AD patients [46]. This hypothesis relies on the above
findings and assumption, which await further validation in
a broader cohort. In the remaining sections of this report,
we discuss the broader subset of potential platelet mem-
brane biomarkers found changing in probable AD beyond
evidence for platelet activation, and possible insight they
provide into disease mechanisms.

Validation of a decrease in platelet thrombospondin-1
(THBS1) and AD-associated changes detected in
amyloidogenic proteins
THBS1 is a large, homomultimeric extracellular matrix
glycoprotein with multiple signaling functions in different
cellular contexts. It is secreted from platelets, and also
from astrocytes in the CNS, where it may stimulate neuro-
nal synaptogenesis [53]. In the context of platelet mem-
branes, THBS1 promotes thrombosis in at least two ways:
(1) it stimulates platelet aggregation through CD36 recep-
tor-based inhibition of kinase signaling cascades [54], and
(2) THBS1 acutely counteracts the promotion of blood
flow by nitric oxide via binding to another receptor, CD47,
on vascular smooth muscle cells [55,56]. The platelet
receptor CD36 was well quantified in the membrane pro-
teome pools and found to be trending down (log2 (AD/
control) -0.48, Table S3 in Additional file 1), though not
significantly.
To validate the potential AD-associated decrease in

THBS1, the platelet membrane fraction from individual
cases was immunoblotted with an antibody against
THBS1. Validation of individual cases following proteomic
analysis of pooled samples is important because sample
pooling opens up the possibility that a large change in one
individual could be driving the signal measured [38],
despite the fact that interindividual variability generally is
muted by pooling. In the pooled proteome quantitative
analysis, THBS1 was decreased 75% in AD (log2 (AD/con-
trol) -2.02) and immunoblotting confirmed this result (P =
0.0085, Figure 4). Notably, some of the cases used for
validation were not included in the proteomics analysis.
However, the confirmation of decreasing THBS1 across
a number of individuals with clinically diagnosed AD
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increases the likelihood that the decrease in THBS1
observed by proteomics for the AD pool is disease specific.
Reduced THBS1 in AD platelet membranes could be

consistent with complementary evidence for secreted
THBS1 in CNS. Buée et al. found that THBS1 stained
senile plaques in AD brains and suggested it may be
involved in plaque formation [57]. Recently, Horn et al.
examined the effect of human neutrophil alpha-defensins,
components of the innate immune system, on platelet
activation. They found that these defensins activated pla-
telets and led to fibrinogen and THBS1 binding. More-
over, these fibrinogen and THBS1 complexes formed
amyloid-like structures. Such a cascade could also play a
role in AD pathogenesis [58].
Other significantly changed amyloidogenesis-associated

proteins identified in the platelet membrane proteome
included increased beta-2 microglobulin (B2M, log2 (AD/
control) 1.21) and decreased gelsolin (log2 (AD/control)
-1.40). Increased B2M binding to the surface of blood cells
including granulocytes, lymphocytes and monocytes is
characteristic of chronic hemodialysis, and co-occurs with
vascular and renal amyloid deposits of this protein [59].
Notably, none of the patients involved in this analysis had
end-stage renal disease or required dialysis. Consistent
with a specific effect of AD on this protein, elevated B2M
was reported as one of eight CSF biomarkers, which
together made up a multianalyte profile that was able to
distinguish both probable AD and Parkinson’s disease
individuals from controls [60]. Earlier, high B2M in prob-
able AD patient CSF was also found via a proteomic
approach [61].
Gelsolin is a chaperone with multiple functions that has

been shown to bind to Ab [62] and ApoE [63] and has an
independent involvement in certain amyloidoses. Although
it is reportedly unchanging in AD brain, it was previously
identified as a plasma AD marker that correlated positively
with rapidity of cognitive decline in clinically diagnosed

AD patients [64]. However, by itself, a decrease in plasma
gelsolin is also associated with multiple morbidities includ-
ing oxygen imbalances, major trauma, malaria, and liver
injury [65]. Thus, although the changes we describe for
amyloidogenic proteins including THBS1, B2M, and gelso-
lin in the platelet membrane proteome in AD are consis-
tent with what is known to occur in individuals diagnosed
with AD, it is also apparent that alone, these protein
changes are not markers with adequate specificity for AD -
obviating their inclusion into broader multianalyte profiles
that consider a panel of changing proteins, be it on the
membranes of platelets, or in CSF.

Co-occurrence of other pooled analyte changes
consistent with previous biomarker studies
Beyond the above potential markers for clinically diag-
nosed AD, which confirm platelet activation plus a change
in each of three amyloidosis-linked proteins THBS1
(down), B2M (up), and gelsolin (down), we asked what
other changes found are consistent with previously pro-
posed AD markers or potentially linked to proteins
involved in disease mechanism, albeit not necessarily
through activity in platelets. By expanding this list, the
results from the current study might be applied toward
the development of a future blood test that utilizes a
broad multianalyte profile to aid in the confirmation or
diagnosis of AD with higher specificity and accuracy. In
the list of 144 significantly changing proteins in AD plate-
let membrane fractions, we found five additional proteins
that have been identified as potential biomarkers or have a
function homologous to such a protein (Table 3). Manno-
syl-glycoprotein acetylglucosaminyltransferase (MGAT)
4B, elevated 5.5-fold in the AD platelet membrane pool, is
involved in extended glycosylation of proteins. Compara-
tively low expression of a functional homolog, MGAT3,
was recently reported to distinguish a fraction of AD
patients from controls [66]. A vacuolar protein sorting
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Figure 4 Validation of thrombospondin-1 (THBS1) loss in Alzheimer’s disease (AD) platelet membranes by immunoblot. (A)
Immunoblot of THBS1 and CD41 as a loading control for seven control, and five AD individual cases. Cases which contributed to the pools used
for proteomics have no asterisk (*). (B) Densitometry analysis of the immunoblot in panel A.

Donovan et al. Alzheimer’s Research & Therapy 2013, 5:32
http://alzres.com/content/5/3/32

Page 10 of 16



(VPS) 13C allele specified by a single intronic SNP was
recently found to significantly co-occur with AD [67], and
we found that there was a significant, 67%, decrease in the
AD platelet membrane pool. Synthesis of an abundant
membrane lipid class called plasmalogen has been found
to be defective in AD, and the rate-limiting enzyme alkyl-
glycerone phosphate synthase (AGPS) was found to be
reduced in postmortem-confirmed AD brain [68]; in the
platelet membrane pool in this study, AGPS was also sig-
nificantly decreased, by 68%. Ferritin heavy and light
chains, usually found in a 1:1 stoichiometry, increase with
age in normal, but not AD brain, and a distinguishing fea-
ture of frontal cortex in AD compared to Parkinson’s dis-
ease was a large, 5-fold, increase in heavy/light ferritin
ratio [69]. Ferritin light chain AD/control ratio was signifi-
cantly decreased nearly 4-fold (74%) in the pooled prob-
able AD platelet membrane proteome. Finally, insulin
signaling has been linked to AD pathogenesis in multiple
studies, where insulin-like growth factor 1 receptor
(IGF1R) expression and signaling decreases in AD brain.
IGF1R signaling has been shown to reverse amyloid beta
toxicity, perhaps via regulation of amyloid precursor clea-
vage [70]. IGF1R also significantly decreased 74% in the
AD platelet membrane pools. In conclusion, the platelet
membrane proteome harbors a rich pool of analytes, a
number of which are changed significantly in clinically
diagnosed AD and moreover in the case of some potential
AD platelet-derived markers, these proteins changed con-
sistent with previous measurements.

Ten classes of potentially novel AD biomarkers quantified
in platelet membrane pools, and the case for two
additional platelet biomarker candidates
Following analysis of the 144 consistently changing pro-
teins using DAVID bioinformatics, we manually curated
10 ontological classes of potentially novel AD markers in
platelets (Table S4 in Additional file 1), where these class
terms (numbered below) were found in searches of exist-
ing literature to be extensively linked to AD or CNS func-
tion, and to each other. For example, a hypothesis for
calcium (1) dysregulation in AD has been reviewed [71],
and related to mitochondria (2) dysfunction in AD [72].
Endocytic trafficking (8), including clathrin-mediated (7)
and other forms of endocytosis (6), has been linked to
amyloid beta toxicity in a recently published comprehen-
sive yeast screen [73]. Myosin motor proteins (5) are
important for neuronal vesicle transport (8) [74,75].
N-linked glycosylation (9) mediated by the isoprenoid
lipid dolichol is dysregulated in AD [76,77], thereby impli-
cating changes in glycoproteins (10) more generally as
relevant. A loss in proteasome (3) function has been linked
to various neurodegenerative conditions. While an AD-
specific frontal cortex ubiquitin linkage profile did not
implicate a general loss of proteasome function in AD

[78], it is implicated in AD via an essential role for protea-
somal degradation in modulating both inflammatory sig-
naling outside of platelets and the degradation of tau in
neurons following ubiquitination, which may be antago-
nized by tau phosphorylation promoted by Ab [79,80].
Significant decreases in two pairs of interacting protea-
some subunits copurifying with the membrane fraction
were reliably quantified. Finally, platelets possess the capa-
city to undergo apoptotic cell death, and a loss of antia-
poptotic factors (4), like that seen in the membrane
proteome pool from platelets, could potentially precede
neuronal loss during the course of AD.
Although we cannot review all the evidence linking the

above classes or individual proteins to AD as potential
proteins of mechanistic relevance or as biomarker candi-
dates, one protein of interest in the platelet membrane
fraction is reversion-inducing cysteine-rich protein with
kazal motifs (RECK), which is decreased 91% in AD
patients compared to controls. RECK is an inhibitor of
matrix metalloprotease (MMP) proenzyme activation,
including MMP2 [81] and MMP9 [82], but most interest-
ingly, of the presumed alpha secretase APP cleavage
enzyme ADAM10 [83]. The MMP2 and 9 extracellular
matrix proteases have a prominent role in angiogenesis,
but were once hypothesized to function as either alpha or
beta secretases [84] and MMP9 has been proposed as a
biomarker for CNS inflammation in early AD [85]. In
CNS, MMP2 and MMP9 may have differential activity or
localization, providing different opportunities for the
degradation of Ab. MMP9 is produced by CNS neurons
and degrades Ab [86], perhaps combating amyloid plaque
accumulation, albeit at the cost of increased neuroinflam-
mation [87]. Previously reported differences in plasma
MMP2 versus MMP9 activity in AD [88] might have
functional implications in whole blood only in the con-
text of decreased platelet RECK and THBS1, which has
also been reported to act as an effective inhibitor of the
same MMPs [89].
A second and final example of a distinguishing protein

likely bound to the surface of platelet membranes is ApoB,
an important component of very low-density lipoprotein
(VLDL) particles and chylomicrons, which transport post-
prandial triglycerides from intestine to the liver. Although
no significant change occurred in other platelet-associated
lipoproteins, including ApoA1 (log2 (AD/control) -0.09),
ApoE (log2 (AD/control) 0.54), ApoO-like (log2 (AD/con-
trol) -0.68) or ApoJ (clusterin, log2 (AD/control) -0.64),
ApoB was decreased 72% (log2 (AD/control) -1.86) in the
AD platelet membrane fraction. ApoB is a highly poly-
morphic protein with two forms. The mRNA of the B100
form is posttranscriptionally edited at a single base to
change a glutamine-encoding codon to nonsense, resulting
in a shorter B48 form [90]. An artificial mutation that only
produces the B100 form lowers cholesterol levels [91]
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while the B48 form enriches VLDL particles with high
triglyceride levels [92]. The LDL receptor binding site is
determined downstream of the B48 stop codon, as deter-
mined by an R3500Q mutation in B100 that decreases
LDL particle affinity for its receptor [93]. The initial report
of mRNA editing also demonstrated that the expression
and activity of the specific RNA editase is promoted by
insulin [90]; hyperinsulinemia is a major risk factor for
AD [94] and has also been linked to an increase in cog-
nitive markers of premature brain aging in individuals
without AD [95]. Upon close examination, the decrease
in platelet-associated ApoB measured was driven by
peptides encoded exclusively by the B100 mRNA, which
are encoded after the editase-dependent stop codon at
residue 2180 (data not shown). This does not rule out a
general decrease in ApoB binding to platelets, where
THBS1 (previously described as a significantly decreas-
ing protein) is one of a number of platelet proteins cap-
able of binding to both VLDL and chylomicrons [96].
However, existing evidence for elevated ApoB-48 co-
occurring with high Ab in the intestinal enterocytes that
serve as the normal site for ApoB RNA editing and
secretion of B-48 containing chylomicrons [97] lends
support for the potential usefulness of the ApoB-48/
ApoB-100 ratio associated with platelets as a potential
biomarker, which should be further explored, in parallel
with the alternate possibility that pan-ApoB association
with platelets could be decreased. Furthermore, evidence
implicates that ApoB-containing lipoprotein particles can
strongly influence the activity of prothrombotic proteases
[98,99].
Throughout the discussion of our results, it is notable

that the platelet membrane proteome changes are often
functionally linked to the process of thrombosis. To visua-
lize the best-established functional interactions of the
putative biomarkers discussed throughout these results,
we built an interaction network (Figure 5). Strikingly, most
of the potential biomarkers uncovered indeed do have
established functional linkage to the tightly integrated
multi-hubbed network of alpha granule components.

Conclusions
In this study, we purified platelet membrane proteins for
quantitative proteomics and identify potential biomarkers
and pathways affected in patients with clinically diagnosed
AD. In line with previous findings, many of the platelet-
specific pathways that are changing are involved in platelet
activation, and this is consistent with a role for Ab peptide
in activating platelets and leading to platelet aggregation
[47]; moreover, APP from platelets is a major source of
Ab in circulating blood [15,100], suggesting a potential
feed-forward mechanism since APP is established to be an
alpha granule component [101], and its mobilization via

platelet activation could lead to increased circulating Ab.
We did not sequence any APP Ab peptide in the extracted
membrane proteome, although APP was sequenced by
eight peptides distributed across residues 41 to 662 in the
total platelet proteome, suggesting that amyloid processing
may occur in vitro during or prior to the membrane
enrichment process and consistent with the presence in
platelets of the full complement of secretase activities [18].
Alternatively or in addition, platelet activation, or
decreased platelet activity in AD [22,102], may coincide
with variable control of vascular risk factors in patients
across studies. Vascular risk factors that can coincide with
platelet activation include diabetes, hypertension, hyperch-
olesterolemia, and/or atherosclerosis [103,104]. In this
small study, matching controls to AD individuals for med-
ication use was performed only for aspirin. Thus, it is pos-
sible that other vascular risk factors not sufficiently
controlled by medications, could thereby affect platelet
activation. Vascular risk factors are established to increase
the risk of developing AD or promoting AD progression
[105,106] which reasons that variability in the acute or
chronic presentation of these factors may coincide with
variable disease progression. Ideally, future studies should
measure the stability of the platelet membrane proteome
between consecutive blood donations to quantify intra-
subject variation, whereas the measurement of inter-sub-
ject variability would require proteomic comparisons
across individual, rather than pooled cases.
Although our findings indicate a broad set of potential

AD biomarkers occurring among proteins associated
with platelet membranes, it is important to cite inherent
constraints. Glycoproteins and proteins with high hydro-
phobicity or with multiple transmembrane domains can
be underestimated following trypsin digestion [107].
However, both AD and control pools were prepared simi-
larly and peptide intensities were directly paired and
compared by our bioinformatics approach. Therefore,
this minor limitation mainly hampers abundance com-
parisons across different proteins, and estimation of
absolute protein amount, which were not necessary for
our determination of candidate differential biomarker
status. However, the first major limitation of our study is
small sample size. A much larger and more diverse sam-
ple would be required before drawing any definitive con-
clusions about platelet differences co-occurring with AD.
Second, all of the cases in this study were clinically diag-
nosed, and as such are probable AD cases; diagnostic
errors occur in about 5 to 10% of cases based on post-
mortem pathological confirmation from brain tissue.
While it is possible that one or more patients in this
study could have a form of dementia (for example vascu-
lar dementia) other than AD, a diagnosis of probable AD
was given only when no other cause of dementia was
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likely based on patient presentation, past medical history,
CSF biomarker studies for tau and Ab, and neuroimaging
results. All of these patients received a consensus diagno-
sis of AD from a group of board certified neurologists
who specialize in dementia. Third and finally, additional
validation of the specificity of platelet markers for AD
would require inclusion of additional out-groups from
patients with other types of dementia as well as patients
with conditions that cause platelets to be activated (such
as sepsis or cancer, or any of the isolated vascular risk
factors described above in isolation from cognitive
impairment status).
Despite the above caveats, this study provides unique

insight into pathways changing in platelets in indivi-
duals diagnosed with AD. We have presented findings
that evoke insights into existing literature and provide
evidence for platelet membrane-associated proteins as
potentially useful disease markers which co-occur in
the periphery or possibly even derive from active

mechanisms of disease progression or prognosis. These
markers could be part of a predictive multianalyte pro-
file with the potential to be determined via future
blood-based tests that are both specific and accurate
with regard toward confirming diagnosis of probable
AD.
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Figure 5 Functional interactions among proteins discussed in this study as potential biomarkers for Alzheimer’s disease (AD) in
platelet membrane proteome. STRING [108] v9.0 was used to map functional interactions among the 15 platelet-activation associated proteins
listed in Table 3 and other proteins mentioned as potential biomarkers.
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