
Background

Genetic forms of frontotemporal dementia and 

amyotrophic lateral sclerosis

Frontotemporal dementia (FTD) is a common dementia 

in people aged under 65  years [1,2] characterized by 

impaired social comportment, apathy, lack of empathy, 

cognitive decline, and appetite changes with neuro patho-

logic and genetic features overlapping with amyotrophic 

lateral sclerosis (ALS) in a subset of patients. ALS is a 

neurodegenerative disorder that, in its most common 

form, causes both upper and lower motor neuron signs 

with muscle wasting and a rapid progression to death 

within 3 to 5 years. Th ese two diseases often coexist, with 

22% of ALS patients meeting FTD diagnostic criteria and 

a greater number (48%) manifesting cognitive or 

behavioral abnormalities of FTD but not the full 

syndrome [3,4]. Conversely, 15% of FTD patients display 

signs of motor neuron disease or ALS [5], suggesting that 

these diseases lay along the same disease spectrum. A 

family history of dementia is present in about 40% of 

FTD cases, with an autosomal dominant pattern of 

inheri tance identifi able in 10% of cases [6]. ALS has an 

autosomal dominant pattern in up to 10% of cases as well 

[7]. Previously, most of the known genetic causes of FTD 

were attributed to mutations on chromosome 17, in 

genes encoding the microtubule associated-protein tau 

(MAPT) [8] or progranulin (GRN) [9,10]. Prior to the 

discovery of C9ORF72, the most common mutation 

associated with ALS disease was in superoxide dismutase

(SOD1) [11,12]. Other mutations identifi ed in familial 

ALS include UBQLN2 [13], TDP43, FUS, OPTN, and 

VCP.

The discovery of C9ORF72
A variety of prior linkage analysis studies of families in 

which members have developed FTD, ALS or both (FTD-

ALS) in an autosomal dominant inheritance pattern 

suggested linkage to a region on chromosome 9p [14-22]. 

A collaborative eff ort between our group at the University 

of California, San Francisco (UCSF), researchers at the 

Mayo Clinic, and the University of British Columbia 

(UBC) led to the discovery in 2011 that a hexanucleotide 

repeat expansion in a non-coding region, the promoter or 

the fi rst intron, of the chromosome 9 open reading frame 

72 (C9ORF72) gene was the cause of FTD and ALS in the 

most strongly linked family (Vancouver San Francisco 

Mayo-20 (VSM-20) family) to chromosome 9p. Analysis 

of other autosomal dominant FTD kindreds revealed this 

mutation to be the most common genetic cause of FTD 

(12% of familial FTD; 3% of sporadic FTD), ALS (23% of 

familial ALS; 4% of sporadic ALS) or combined FTD-ALS 

at each of these institutions [12,16,23]. At the same time, 

another group found the same genetic mutation in a 

Finnish population with higher prevalence (46% of 
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ALS clinical phenotypes and identify biomarkers and 

therapeutic agents that can cure the most common 

form of genetically determined FTD and ALS.
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familial ALS; 21% of sporadic ALS) [24]. In the initial 

studies, the clinical disease phenotypes associated with 

this mutation most commonly included FTD, ALS, and 

FTD-ALS [25-27]. Less frequently, other phenotypes, 

such as the non-fl uent variant of primary progressive 

aphasia (nfvPPA) and semantic variant of primary pro-

gres sive aphasia (svPPA), both with and without motor 

neuron disease, have been observed [12,28,29] in addition 

to Alzheimer’s disease [30]. At autopsy, examination of 

these mutation carriers identifi ed frontotemporal lobar 

degeneration-TAR DNA binding protein-43 (TDP-43; 

FTLD-TDP) neuropathology in all. Th e location, mor-

pho logy, and distribution of TDP-43 immunoreactive 

inclusions defi ne the TDP subtype of FTD pathology [31] 

and two subtypes, FTLD-TDP type A and type B, have 

been reported in association with the C9ORF72 mutation 

[26-32]. Additionally, immunoreactivity to ubiquilin 

(UBQLN) and p62 (sequestosome 1), proteins involved in 

cellular protein degradation pathways, as well as an as yet 

unidentifi ed protein, have been noted in mutation 

carriers [12,16,26-29,32-35] and have been hypothesized 

to be signature pathological features of C9ORF72-related 

disease [35].

Treatment implications

Th e discovery of the C9ORF72 mutation has important 

treatment implications for patients with FTD.

First, this mutation may reveal important mechanistic 

information about the molecular triggers for FTD and 

ALS, thus allowing the identifi cation of novel drug 

targets. In addition, the discovery of C9ORF72 mutations 

as a cause of FTD may help to resolve some confusing 

dissociations between two genes that, when mutated, 

cause ALS but rarely FTD, yet are found at autopsy in the 

form of insoluble protein deposits in both disorders: 

TDP-43 and fused in sarcoma (FUS). Since both TDP-43 

and FUS are RNA binding proteins, the fi nding that 

C9ORF72 expansions have the potential to alter RNA 

binding protein levels may be particularly important for 

understanding the biochemical mechanisms underlying 

FTD-ALS. Specifi cally, C9ORF72 repeat expansions 

decrease the levels of TDP-43 or FUS, which could aff ect 

RNA transport or processing and may be a key patho-

physiological trigger for FTD-ALS. In addition, C9ORF72 

mutations could also impair RNA metabolism if the 

hexanucleotide repeat expansions sequester other nucleic 

acid binding proteins [23]. Th us, cellular RNA processing 

and transport mechanisms are likely to be key drug 

targets for FTD-ALS.

Second, since the C9ORF72 mutation is by far the most 

prevalent cause of FTD and ALS, accounting for 11.7% of 

familial FTD, 22.5% of familial ALS, and 4% of sporadic 

ALS [23], and as much as 46% of familial ALS and 21.1% 

of sporadic ALS in a Finnish population [24], a treatment 

developed for C9ORF72 mutation carriers might even-

tually fi nd a use in both inherited and sporadic forms of 

these diseases, potentially benefi tting a signifi cant pro-

portion of patients with both disorders. Both possibilities 

are discussed in greater detail below.

Drug discovery opportunities aff orded by the 

C9ORF72 mutation

Target identifi cation

Targeting the pathological mechanism responsible for 

C9ORF72-associated FTD and ALS is a logical fi rst step 

in leveraging this discovery to develop new treatments 

for both C9ORF72-associated disease as well as other 

forms of FTD and ALS. Two non-mutually exclusive 

mecha nisms might explain the pathogenesis of C9ORF72-

related FTD-ALS. Expanded repeat disorders in untrans-

lated regions or introns generally can cause disease 

pathogenesis by loss of function due to decreased protein 

expression, or by toxic gain of function due to inclusion 

of multiple repeats within DNA or RNA transcripts [36]. 

Th e hexanucleotide expansion can occur in the C9ORF72 

gene promoter region that binds to transcription regu-

latory factors. Th is can lead to decreased C9ORF72 gene 

transcription and ultimately protein expression. Consis-

tent with this hypothesis, one of the three RNA splice 

variant mRNAs from C9ORF72 was decreased in muta-

tion carriers compared to non-carriers in two separate 

studies [23,37]. Th us, one target for new FTD drugs 

might be agents that increase C9ORF72 protein levels, or 

make up for the loss of C9ORF72 protein function.

Expanded hexanucleotide repeats in RNA transcripts 

could result in aberrant splicing or generation of RNA 

fragments that form nuclear inclusions. Th ese foci could 

sequester RNA-binding proteins in the nucleus and alter 

regulation and splicing of other genes. As a result, the 

C9ORF72 hexanucleotide expansion RNA foci could 

have multi-systemic eff ects. Such a sequestration mecha-

nism occurs in other non-coding repeat expansion 

diseases such as myotonic dystrophy (DM1) and fragile 

X-associated tremor/ataxia syndrome (FXTAS) [38,39], 

which have both neuronal and non-neuronal phenotypes. 

Th is suggests that a second target for new FTD therapies 

would be the repeat expansions themselves or the RNA 

fragment foci that form as a result of the repeat expan-

sions. A fi nal possibility is that RNA-binding protein 

sequestration by expanded hexanucleotide repeats and 

haploinsuffi  ciency of C9ORF72 protein both contribute 

to the disease mechanism and could be targets for thera-

peutic intervention (Figure 1).

RNA as a therapeutic target

Clues to identifying which compounds might prove 

effi  cacious for C9ORF72-related disease can be found by 

looking at other neurodegenerative disease models with 
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similar repeat expansion pathophysiology. DM1, FXTAS, 

and several spinocerebellar ataxias have repeat expan-

sions in non-coding regions that may lead to targeted 

drug discovery eff orts or already have these underway 

[40]. Examining previously tested drugs (both failed and 

promising) and drug targets in these disorders might 

provide starting points for C9ORF72. RNA antisense 

oligonucleotides have been studied in DM1 [41,42], were 

tolerated in a phase I clinical trial for SOD1-related ALS, 

and could be applied in c9FTD/ALS. Th ese oligonucleo-

tides could act to interrupt sequestration of critical 

proteins by toxic RNA hexanucleotide repeat expansions 

or potentially alter the transcription or splicing of 

C9ORF72. Alternatively, the oligonucleotides could 

disrupt RNA hairpin structures or other steric confor ma-

tions that are thought to have toxic eff ects in other repeat 

expansion mutation diseases [36,39,43].

TDP-43 as a drug target

TDP-43 is another attractive drug target in C9ORF72-

related FTD/ALS. Although TDP type A and B have been 

reported, all autopsy studies of C9ORF72 mutation 

carriers thus far have been noted to have TDP-43 

pathology. Even with the variable FTLD-TDP pathology, 

a compound that increases clearance or inhibits aggrega-

tion of TDP-43 protein could be useful in c9FTD/ALS. 

One compound that does this is methylene blue, which 

can decrease TDP-43 aggregation in vitro [44], although, 

thus far, methylene blue has failed to demonstrate 

improve ments in motor function in TDP-43 mouse 

models of ALS [45]. Methylene blue may also promote 

autophagy [46]. Compounds that increase cellular protein 

turnover via autophagy or the proteasome pathway might 

also be candidate therapies for C9ORF72-related disease, 

particularly since there is evidence of accumulation of 

proteins such as UBQLN and p62 in these cases [33]. 

Finally, if developed, immunotherapies (vaccines or 

neutralizing antibodies) targeted towards TDP-43 would 

be attractive therapies. A variety of such therapies are in 

development for neurodegenerative diseases with tau, 

amyloid, and synuclein pathology.

Target validation

In order to determine which mechanism(s) is/are patho-

genic, cell-based studies or animal models of C9ORF72-

related disease are needed. Transgenic mouse models 

have been used to study many degenerative diseases, 

including Alzheimer’s disease and ALS, and may ulti-

mately be most useful for developing C9ORF72-targeted 

therapeutics. In addition, if C9ORF72 homologues exist 

in Caenorhabditis elegans and Drosophila, these model 

systems may also be useful for target identifi cation [47]. 

Induced pluripotent stem cells have also been used to 

create both patient- and disease-specifi c cells [48] in 

order to better study the pathophysiology [49]. High 

throughput drug screening using cells from C9ORF72 

mutation gene carriers, such as those that we have 

derived from the VSM-20 family, could be used to screen 

for potential compounds. When therapeutic interven-

tions are identifi ed, patient-specifi c cell lines can be used 

to test the toxicology and potential benefi t for that 

individual patient. Given the heterogeneity of C9ORF72 

phenotypes, with both slowly and rapidly progressive 

forms of disease [50], use of patient-specifi c induced 

pluripotent stem cells may be particularly useful for 

C9ORF72-related disease.

Application of current ALS experimental therapeutics to 

C9ORF72 disease

Other potential agents to consider for treatment of 

c9FTD/ALS are ones already used or in late stage clinical 

trials in ALS [51]. Considering the pathological, genetic, 

and phenotypic similarities now known to be shared with 

FTD, drugs found to be effi  cacious for ALS might also be 

expected to benefi t individuals with FTD due to TDP-43, 

particularly those caused by C9ORF72. Riluzole, a neuro-

protective agent thought to block voltage-dependent 

sodium channels on glutamatergic nerve terminals, is the 

Figure 1. Drug development opportunities resulting from the C9ORF72 mutation discovery. The fi gure shows a general, hypothetical drug 

development plan with opportunities resulting from the discovery at multiple pre-clinical and clinical development stages. ALS, amyotrophic lateral 

sclerosis; C9ORF72, chromosome 9 open reading frame 72; FTLD, frontotemporal lobar degeneration; TDP, TAR DNA binding protein.
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only US Food and Drug Administration-approved drug 

to treat ALS and has been shown to reduce mortality, 

though modestly [52-54], and may be worthwhile testing 

in preclinical C9ORF72 models. Dexpramipexole, an 

enantiomer of pramipexole, is thought to have anti-

infl ammatory properties and was recently found to 

attenuate the decline in function using the ALS 

Functional Rating Scale-Revised (ALSFRS) in a dose-

dependent manner with good tolerability in ALS [55]. 

Fingolimod, an anti-infl ammatory drug used to treat 

multiple sclerosis in several countries outside the United 

States, will soon begin phase II clinical trial in ALS [56] 

and may also have promise in FTD. Clinical trials of 

agents that have clearly shown no benefi t in ALS, like 

those with lithium [57], may also be useful in guiding 

such therapies away from use in FTD due to C9ORF72.

To streamline identifi cation of promising treatments 

for C9ORF72-related disease, cases from previous ALS 

clinical trials should be genotyped. Given the high 

prevalence of the C9ORF72 mutation in ALS, agents that 

are benefi cial for sporadic ALS may also be useful in 

C9ORF72-associated FTD and FTD-ALS. Such a 

response might be predicted if post hoc genetic analyses 

of previous ALS clinical studies showed that C9ORF72 

patients clearly benefi ted from a drug. Even if an overall 

ALS clinical trial was negative, it remains possible that 

C9ORF72 carriers could have been a responsive sub-

popu lation in whom eff ects were masked by non-carriers. 

Similarly, it would be of interest to genotype patients who 

respond particularly well to a given therapy to assess 

whether this relates to C9ORF72 gene status.

Identifying disease modifying factors

Studying patients who are carriers of the C9ORF72 

mutation with particular attention to the genetic and 

environmental factors that can slow or alter the disease 

phenotype is another way to learn about the disease 

mechanism to identify potential drug targets. An example 

of a slowly progressive FTD (FTD-SP) phenotype of 

C9ORF72 disease has been described recently [50]. FTD-

SP patients have features of FTD, yet have been noted to 

have minimal atrophy on structural MRI and little to no 

progression on sequential neuropsychological measures. 

Identifying the factors that aff ect the rate of disease 

progression like those in FTD-SP patients would provide 

insight into other targets for potential therapies. An 

important question that has yet to be answered is 

whether the number of hexanucleotide repeats aff ects the 

C9ORF72 phenotype, similar to other repeat expansion 

disorders. Preliminary studies have found that normal 

controls have no more than 23 to 30 repeats of the 

hexanucleotide (GGGGCC), but carriers of the mutated 

alleles usually have over 60 [37] and as high as 1,600 [23], 

although the number of repeats is not easily quantifi ed.

It is also likely that other genes exist that modify the 

C9ORF72 phenotype. For example, in FTLD-TDP caused 

by progranulin (GRN) mutations, a number of genes and 

microRNAs have been identifi ed that alter the disease 

phenotype [58]. Th e presence of certain TMEM106B 

single nucleotide polymorphisms was shown to reduce 

GRN mutation penetrance possibly by modifying pro-

granulin protein levels [59]. TMEM106B could thus be a 

target for new therapies for patients with GRN mutations, 

and similarly, genes that modify C9ORF72 protein levels 

or function would be good targets for drugs in C9ORF72 

mutation carriers.

Studies such as COHORT-HD (Cooperative Hunting-

ton’s Observational Research Trial) that seek to identify 

genetic and environmental factors that modify disease 

progression are being pursued in other repeat expansion 

diseases such as Huntington’s disease [60] and suggest 

that similar eff orts should be pursued in c9FTD/ALS. A 

large study like this, if employed for C9ORF72, could 

identify both genetic and epigenetic factors that infl uence 

the C9ORF72 hexanucleotide expansion phenotype. 

Potentially, factors such as the number of hexanucleotide 

repeats, brain atrophy pattern at baseline, or environ-

mental exposures could be used to identify other targets 

for C9ORF72 disease modifying agents.

Human clinical trials

In preparing for clinical trials on mutation carriers of 

C9ORF72, a fi rst step would be to use the C9ORF72 

geno type as a biomarker for diagnostic inclusion. If the 

rate of progression of disease is related to the length of 

repeats, as seen in other repeat expansion diseases like 

spinocerebellar ataxias and Huntington’s disease, this 

could also help to select certain populations of C9ORF72 

mutation carriers who are expected to progress at the 

same rate. To determine if a particular agent is modifying 

the course of C9ORF72 disease or delaying expression of 

the disease phenotype in a mutation carrier, a biomarker 

that accurately captures disease progression would be 

particularly helpful.

A cure for C9ORF72-related disease is more likely if a 

disease modifying treatment can be initiated early in the 

course of the disease, ideally before the onset of disease. 

By following the model of other groups that study 

autosomal dominant forms of dementia, such as the 

Dominantly Inherited Alzheimer Network (DIAN), future 

researchers can emulate methods to study the eff ect of 

the C9ORF72 mutation in presymptomatic mutation 

carriers. DIAN is a clinical research network that studies 

the presymptomatic events that occur in autosomal 

dominant Alzheimer’s disease gene (mainly presenilin 1 

and amyloid precursor protein) carriers to learn about 

the disease. DIAN has identifi ed changes in neuroimaging 

and fl uid biomarkers that precede the development of 
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AD in these cases, often by 15 years or more. Biomarkers 

will be crucial to gauge the effi  cacy of therapeutic agents 

in clinical trials of disease modifying agents initiated 

before the patient displays clinically manifest disease. 

Such a presymptomatic ‘prevention’ trial is currently 

planned for DIAN as well as another similar Alzheimer’s 

disease initiative called the Alzheimer’s Disease Preven-

tion Initiative. Once biomarkers that capture C9ORF72 

disease progression are developed (one possibility might 

be cerebrospinal fl uid TDP-43 measurements), similar 

C9ORF72 prevention clinical trials might be considered.

Conclusions

Th e discovery of the hexanucleotide repeat expansion in 

the C9ORF72 gene is a major step forward in under-

standing the pathophysiology of the FTD/ALS spectrum 

of diseases. With this information, the time is ripe for 

developing treatments that target specifi c C9ORF72-

asso ciated disease mechanisms. Moreover, the link 

between various inherited neurodegenerative diseases 

like FXTAS, DM1, spinocerebellar ataxias, and FTD is 

becoming stronger as more is learned about the patho-

genic mechanisms of nucleotide expansion repeat diseases. 

A possible common mechanism for all FTLD-TDP 

diseases involving RNA processing abnormalities could 

also facilitate the identifi cation of novel therapeutic 

agents. In order to achieve the goals of fi nding a disease-

modifying agent for C9ORF72 FTD/ALS, an appropriate 

biomarker of disease progression or severity must be 

identifi ed to be used in human pharmacodynamics and 

effi  cacy studies. For example, if TDP-43 is the drug 

target, then fi nding an in vivo tool for measuring the 

burden of pathology, such as a cerebrospinal fl uid or 

imaging biomarker, might be necessary. Likewise, if 

raising disease-relevant mRNA levels is the goal of a 

potential compound, it is important to demonstrate that 

the RNA levels change with disease. Measuring cerebro-

spinal or plasma RNA levels might be one way to demon-

strate such target engagement in human subjects. Future 

clinical trials could also use measurements of such levels 

as a surrogate endpoint of effi  cacy. Further research is 

required before specifi c C9ORF72-related compounds 

can be developed and tested in humans, but the discovery 

of the C9ORF72 mutation suggests that an important 

pathophysiological mechanism involves FTLD-TDP RNA 

processing. Th is fi nding may lead to new therapies for 

FTD, ALS, and possibly other repeat expansion degenera-

tive disorders.
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