
Introduction

Alzheimer’s disease (AD) is the most common cause of 

dementia in aged populations, being characterized by 

cerebrovascular and neuronal dysfunctions that induce a 

progressive decline in cognitive functions [1]. Th e 

occurrence of AD in individuals aged over 65  years is 

defi ned as late-onset AD (LOAD)  - representing the 

majority of AD suff erers. Patients with early-onset AD 

(EOAD) represent approximately 1% of the overall 

population [2].

Symptomatic AD is diagnosed clinically using a battery 

of cognitive tests, with signifi cant eff orts ongoing to move 

diagnosis to earlier disease stages using the additional 

tools of genetic testing, blood and cerebrospinal fl uid 

biomarkers and neuroimaging [3]. Previous to these 

advances, however, AD could only be defi nitively diag-

nosed as the cause of dementia by post-mortem detection 

of two major neuropathologies. Th ese comprise senile 

plaques of aggregated Aβ peptide, and neurofi brillary 

tangles of hyperphosphorylated, aggregated tau protein.

Amyloid-β

Aβ peptides are produced through sequential proteolysis 

of the amyloid precursor protein (APP) by β-secretase/

BACE and the γ-secretase complex (partly comprising 

the presenilin PS1 or PS2). Aβ peptides vary in length 

from 39 to 43 amino acids with the predominant species 

being Aβ40 and Aβ42 [4]. Disease-modifying AD drug 

discovery research has focused on strategies targeting 

production or clearance of the Aβ peptide. Th is ‘amyloid 

hypothesis’ has been driven by the fact that familial 

EOAD with autosomal dominant inheritance is caused by 

mutations in the APP, PS1 or PS2 genes. In simple terms, 

the net eff ect of these mutations is to increase either bulk 

Aβ levels or the ratio of Aβ42:Aβ40 production [5]. An 

increase in brain Aβ42 levels, whether absolute or 

ratiometric, is hence critical to the aetiology of familial 

EOAD.

In agreement with the amyloid hypothesis, studies in 

transgenic mouse models of AD imply a cascade of 

events in which abnormal forms of tau act as downstream 

mediators of Aβ toxicity [6,7]. Contrary to this proposed 

cascade, however, whilst neuronal loss and neurofi brillary 

tangle counts strongly predict cognitive status in LOAD 

patients, total Aβ plaque load correlates weakly with 

cognitive impairment [8]. Th e prevalent explanation for 

this disparity is that it is diff usible Aβ oligomers, rather 

than Aβ plaques, that represent the actual toxic species. 

Th e E693Δ APP mutation, for example, causes 

Alzheimer’s-type dementia through the toxicity of non-

fi brillar, intracellular Aβ oligomers [9]. Conversely, the 

‘Arctic’ APP mutation (E693G) induces formation of large 

Aβ oligomers known as protofi brils [10]. Experimental 

disagreement over the physicochemical nature of toxic 

oligomers in LOAD has hampered delineation of their 

exact role in disease [11].

Apolipoprotein E

Apolipoprotein E (apoE) is the primary transporter of 

cholesterol in the central nervous system (CNS), being 

synthesised within the blood brain barrier (BBB) 
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pre dominantly by astrocytes [12]. Th ree apoE poly-

morphic alleles (APOE2, APOE3, and APOE4) encode 

three protein isoforms (apoE2, apoE3 and apoE4) that 

diff er by cysteine/arginine polymorphisms at position 

112 or 158. Th e APOE4 allele, found in 15% of the popu-

lation, remains the most signifi cant genetic risk factor for 

LOAD [13].

In support of the amyloid hypothesis, APOE4 carrier 

status is associated with greater Aβ plaque load in both 

AD patients and cognitively normal individuals [14,15]. 

Th e APOE4 allele also correlates with increased cerebro-

vascular Aβ deposition [16] and, correspondingly, is a 

risk factor for cerebral amyloid angiopathy [17]. As a 

consequence, research into the mechanistic connection 

between apoE4 and LOAD has focused on delineating 

the interaction of apoE with Aβ pathology (Figure  1). 

Experimental data now support a clear and necessary 

role for apoE in Aβ toxicity.

Interactions of ApoE with Aβ pathology

In vitro studies have demonstrated that apoE4 more than 

apoE3 interacts directly with Aβ [18], enhancing Aβ 

fi brillisation [19]. Interpretation of such data is compli-

cated by the diffi  culties of replicating in vivo Aβ 

conformation and apoE lipidation status. However, early 

Aβ amyloidosis mouse model data also support a clear 

role for apoE in Aβ pathology [20]. As a consequence of 

these fi ndings, apoE/Aβ interaction inhibitors are being 

developed as AD therapeutics. Small Aβ-mimetic 

peptides intially demonstrated reductions in apoE-

stimulated formation of neurotoxic Aβ aggregates in vitro 

[21], with these data being subsequently confi rmed in 

vivo using a mouse model of Aβ brain amyloidosis [22].

ApoE proteins comprise an amino-terminal receptor-

interacting domain and carboxy-terminal lipid-binding 

domain. Fluorescence lifetime imaging-fl uorescence 

resonance energy transfer (FLIM-FRET) studies on human 

post-mortem tissue sections indicate that Aβ is prefer-

entially associated with the carboxyl terminus of apoE4 

compared to that of apoE3, and that apoE4 undergoes 

greater amino-terminal degradation, prolonging Aβ inter-

action [23]. Th is prolonged interaction may enhance 

forma t ion and stabilisation of toxic Aβ oligomers [24]. 

Analyses of AD brain samples have demonstrated a 

higher burden of oligomeric Aβ in APOE4  carriers with 

increased amyloid plaque-associated synaptic loss. 

ApoE4 co localises with oligomeric Aβ at the synapse, 

indicating a key role as a co-factor in Aβ toxicity [25].

Th e greater susceptibility of apoE4 to proteolytic 

cleavage, and the subsequent prolongation of Aβ inter-

actions, is thought to be a consequence of diff erential 

domain interaction. Th e C112R polymorphism in apoE4 

results in a salt bridge between R61 and E255, which is 

lacking in apoE3 [26]. Th is brings the amino- and 

carboxy-terminal domains into closer proximity and 

exposes the hinge region of apoE4 to proteolysis [23]. 

Consequently, the development of small-molecule ‘struc-

ture correctors’ that shift apoE4 to an apoE3-like confor-

mation has also been proposed as a therapeutic strategy 

for AD [27].

Th e main challenge for small molecule approaches 

aiming to disrupt apoE intradomain or apoE/Aβ protein-

protein interactions is to achieve a compound with 

suffi  cient potency, specifi city and BBB permeability to be 

suitable for clinical trials.

ApoE mouse models of Aβ amyloidosis

Multiple mouse models of Aβ brain amyloidosis have 

been generated, predominantly comprising familial, 

EOAD APP and PS1/2 mutations either alone or in com-

bination [28]. To varying degrees, these mice recapitulate 

brain parenchymal and cerebrovascular Aβ deposition 

with cognitive behavioural disorder; however, neuronal 

loss is relatively lacking in most models. When con-

sidering the impact of apoE on Aβ pathology in these 

mice it is important to consider that endogenous murine 

apoE is non-polymorphic and does not display domain 

interaction [29]. Consequently, mouse apoE behaves 

most similarly to human apoE3. In order to determine 

the eff ects of human apoE isoforms, Aβ amyloidosis 

trans genics have now been combined with a variety of 

human apoE mouse models. Th ese crosses display 

delayed onset of Aβ pathology relative to their murine 

equivalents, emphasising the importance of interspecies 

diff erences [30].

Mice expressing mutant V717F APP in conjunction 

with human apoE isoform knock-ins (PDAPP/TRE mice) 

show isoform-dependent Aβ deposition, with apoE4 

showing the strongest eff ect followed by apoE3 and then 

apoE2 [31].

Gene dosage is critically important, with haplo-

insuffi  ciency of both human apoE3 and apoE4 k nock-in 

isoforms causing marked reductions in Aβ deposition in 

APP/PS1 mutant mice [32,33]. Th is is a key point, as 

there is an ongoing debate regarding the potential thera-

peutic benefi ts of raising versus lowering apoE expression 

levels. Whilst the transgenic data indicate that reducing 

apoE levels would be more benefi cial, small-molecule 

upregulation of apoE levels, particularly through agonism 

of the lipid X receptor (LXR) [34] or retinoid X receptor 

(RXR) [35], has been reported as a promising therapeutic 

approach. In vivo studies of such agonists, whilst 

successfully demonstrating reductions in Aβ pathology, 

were carried out against a background of endogenous 

murine apoE. It remains a possibility, therefore, that 

increasing expression of human apoE4 may actually be 

deleterious to disease. It should also be noted that LXR/

RXR agonism has side eff ects, such as hyper tri gly ceridaemia, 
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and the relatively hydrophobic nature of ligands makes 

complicating interactions with the γ-secretase multi-

span membrane complex a possibility [36].

ApoE and Aβ production

Th ere is limited evidence for modulation of Aβ pro-

duction by apoE with in vitro studies using cultured cells 

co-overexpressing apoE and APP - a relatively unphysio-

logical paradigm [37]. ApoE4-induced increases in Aβ 

production could be mediated by a novel, apoE-

interacting protein, TMC22, proposed to facilitate an 

interaction between APP and the γ-secretase complex 

[38].

ApoE and Aβ aggregation

Neprilysin is the major protease mediating brain Aβ 

degradation [39]. In vivo inhibition of neprilysin by 

thiorphan infusion induces apoE isoform-dependent 

Figure 1. Apolipoprotein E/amyloid-β interaction pathways and therapeutic approaches. Amyloid-β (Aβ) and apolipoprotein E (apoE) 

are predominantly produced by neurons and astrocytes, respectively. ApoE regulates Aβ oligomerisation, aggregation and receptor-mediated 

clearance, contributing to Aβ pathology in LOAD. Potential therapeutic approaches are indicated in red. LDLR, LDL receptor; LRP, LDL receptor-

related protein; LXR, lipid X receptor; RXR, retinoid X receptor; VLDLR, VLDL receptor.
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aggre gation of Aβ, with apoE4 causing the greatest 

increase in aggregation [40]. It is possible that apoE acts 

to stabilise oligomeric Aβ, causing enhanced toxicity and 

seeding deposition of larger aggregates [24].

ApoE and Aβ clearance

Aβ is cleared from the brain by proteolytic degradation 

[41], bulk fl ow along the perivascular interstitial fl uid 

drainage pathway [42], or by receptor-mediated clearance 

across the BBB [43]. In addition, the ‘peripheral sink’ 

hypothesis postulates that clearance of Aβ from the brain 

is accelerated by removal of Aβ from the plasma via the 

liver and kidneys [44]. APOE4  carriers may display 

clearance defi cits in both compartments as Aβ removal 

from both the CNS and the plasma is reduced in human 

apoE4 knock-in mice [31,45].

ApoE isoform status may infl uence CNS Aβ degra-

dation through indirect mechanisms such as regulation 

of cellular cholesterol - enhancing endocytosis and 

lysosomal degradation of Aβ  [46]. Th e major impact of 

apoE is, however, likely to be through interaction of Aβ 

with cell-surface apoE receptors, including LDL receptor-

related protein 1 (LRP1), the LDL receptor (LDLR) and 

the VLDL receptor (VLDLR) [47]. Receptor binding of 

Aβ, alone or in complex with apoE, either delivers Aβ to 

the lysosome or leads to transcytosis into the plasma via 

the BBB. LRP1 is perhaps the best characterised trans-

porter acting in the latter instance [48]. ApoE isoforms 

(apoE4 > apoE3 > apoE2) may disrupt  rapid, LRP1-

mediated clearance of unbound Aβ by diverting it to the 

VLDLR, which has a slower rate of endocytosis [49].

From a therapeutic perspective, peripheral adminis-

tration of soluble fragments of LRP1 has been shown to 

reduce brain Aβ load in K670N/M671L APP mice 

thr ough plasma Aβ binding - theoretically exploiting the 

peripheral sink hypothesis [50]. However, the primary 

investigation of this type of approach has been through 

enhancement of peripheral Aβ clearance through anti-Aβ 

immunisation strategies. Th ese remain, despite early 

setbacks, one of the most promising current therapeutic 

avenues. Passive immunisation with the humanised anti-

Aβ antibody bapinuezumab demonstrated lower effi  cacy 

in APOE4 carriers with a corresponding increase in 

vasogenic oedema, suggestive of transient increases in 

vascular permeability [51,52]. If phase III trials are positive, 

determination of APOE status is likely to become an 

important aspect of treatment.

In addition to LRP1, LDLR has also been implicated in 

Aβ removal from the CNS. LDLR over-expression 

decreased Aβ deposition and enhanced clearance in the 

K670N/M671L APP, ΔE9 PS1 amyloidosis mouse model 

[53]. LDLR knockout data are inconsistent, however, as 

whilst two studies reported increased Aβ load [54,55] a 

further analysis failed to show any eff ect [56]. Although 

LDLR-upregulating compounds have been reported [57], 

clinical usage of such drugs would be challenging due to 

specifi city and toxicity concerns.

Aβ-independent disease mechanisms

Collaborative large-scale genome-wide association studies 

have identifi ed, in addition to apoE, novel LOAD risk 

genes. Th ese include CLU (encoding apolipoprotein J), 

PICALM, CR1 and BIN1 [58]. Conversely, variants of 

APP and PS1/2, which increase Aβ42 production in 

familial EOAD, were not hits in these studies. Th e genetic 

drivers of LOAD and EOAD are hence likely to be 

diff erent. Whilst the novel LOAD risk genes may function 

in either Aβ clearance [43,59] or toxicity [60], there 

remains a possibility that key implicated pathways, such 

as lipid homeostasis and innate immunity, play Aβ-

independent roles in the aetiology of LOAD. ApoE is 

linked to autoimmune infl ammation, diabetes and coro-

nary heart disease - environmental risk factors for LOAD 

magnifi ed by the APOE4 genotype [61]. Th e clinical 

failures of non-steroidal anti-infl ammatories [62], a per-

oxi some proliferator-activated receptor (PPAR)γ agonist 

[63] and HMG-CoA reductase inhibitors [64] suggest, 

however, that targeting mid-life risk factors for LOAD in 

late stage disease is unlikely to be therapeutically success-

ful. Such treatments, including apoE-based thera peutics, 

may need to be given earlier in the disease process. Th is 

places additional importance on early diagnosis of AD 

and/or preventative treatment in individuals at high risk 

of developing LOAD.

ApoE, and related cell signalling, is also purported to 

modulate synaptic plasticity, tau phosphorylation, and 

neuroinfl ammation [47]. Th e extent to which apoE drives 

the aetiology of LOAD through these mechanisms is 

unclear; however, apoE mimetic peptides designed to 

mediate putative, benefi cial eff ects of apoE demonstrated 

both behavioural and pathological benefi ts in mutant 

APP mice [65]. Th e main challenge with such an approach 

will be to achieve a candidate molecule with appropriate 

physicochemical properties for clinical use.

Conclusions

Understanding of the interplay between APOE genotype 

and Aβ pathology has progressed signifi cantly in recent 

years, particularly with respect to human apoE knock-in 

animal models of Aβ amyloidosis. Th ese demonstrate an 

isoform-specifi c role for apoE4 in retarding Aβ clearance 

from the CNS. By virtue of the nature of the target, 

however, apoE therapeutics are still at an early preclinical 

stage, with appreciable chemistry challenges facing 

small-molecule approaches. Th e most immediate impact 

of apoE on AD therapeutics will likely be the profi ling of 

patients for APOE4 status to help determine dosing of 

anti-Aβ immunotherapy treatments. ApoE has multiple 
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systemic functions, some of which relate to novel LOAD 

risk genes, which may also aff ect the aetiology of AD 

independently of Aβ. Th e understanding, and modelling, 

of these functions remain goals for future research.
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